Investigation of daughter cell dissection coincidence of single budding yeast cells immobilized in microfluidic traps

Author(s):  
Xingyu Xu ◽  
Zhen Zhu ◽  
Yingying Wang ◽  
Yangye Geng ◽  
Feng Xu ◽  
...  
Genetics ◽  
2004 ◽  
Vol 166 (4) ◽  
pp. 1641-1649
Author(s):  
Laura Maringele ◽  
David Lydall

Abstract Telomerase-defective budding yeast cells escape senescence by using homologous recombination to amplify telomeric or subtelomeric structures. Similarly, human cells that enter senescence can use homologous recombination for telomere maintenance, when telomerase cannot be activated. Although recombination proteins required to generate telomerase-independent survivors have been intensively studied, little is known about the nucleases that generate the substrates for recombination. Here we demonstrate that the Exo1 exonuclease is an initiator of the recombination process that allows cells to escape senescence and become immortal in the absence of telomerase. We show that EXO1 is important for generating type I survivors in yku70Δ mre11Δ cells and type II survivors in tlc1Δ cells. Moreover, in tlc1Δ cells, EXO1 seems to contribute to the senescence process itself.


1989 ◽  
Vol 35 (12) ◽  
pp. 1081-1086 ◽  
Author(s):  
Byron F. Johnson ◽  
L. C. Sowden ◽  
Teena Walker ◽  
Bong Y. Yoo ◽  
Gode B. Calleja

The surfaces of flocculent and nonflocculent yeast cells have been examined by electron microscopy. Nonextractive preparative procedures for scanning electron microscopy allow comparison in which sharp or softened images of surface details (scars, etc.) are the criteria for relative abundance of flocculum material. Asexually flocculent budding-yeast cells cannot be distinguished from nonflocculent budding-yeast cells in scanning electron micrographs because the scar details of both are well resolved, being hard and sharp. On the other hand, flocculent fission-yeast cells are readily distinguished from nonflocculent cells because fission scars are mostly soft or obscured on flocculent cells, but sharp on nonflocculent cells. Sexually and asexually flocculent fission-yeast cells cannot be distinguished from one another as both are heavily clad in "mucilaginous" or "hairy" coverings. Examination of lightly extracted and heavily extracted flocculent fission-yeast cells by transmission electron microscopy provides micrographs consistent with the scanning electron micrographs.Key words: flocculation, budding yeast, fission yeast, scanning, transmission.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Laura N Rusche

The gene that allows budding yeast cells to switch their mating type evolved from a newly discovered family of genes named weird HO.


Author(s):  
Xi Zhao ◽  
Xianqiang Lian ◽  
Yan Liu ◽  
Liyan Zhou ◽  
Bian Wu ◽  
...  

Social behaviors do not only exist in higher organisms but are also present in microbes that interact for the common good. Here, we report that budding yeast cells interact with their neighboring cells after exposure to DNA damage. Yeast cells irradiated with DNA-damaging ultraviolet light secrete signal peptides that can increase the survival of yeast cells exposed to DNA-damaging stress. The secreted peptide is derived from glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and it induced cell death of a fraction of yeast cells in the group. The data suggest that the GAPDH-derived peptide serves in budding yeast’s social interaction in response to DNA-damaging stress. Importance Many studies have shown that microorganisms, including bacteria and yeast, display increased tolerance to stress after exposure to the same stressor. However, the mechanism remains unknown. In this manuscript, we report a striking finding that S. cerevisiae cells respond to DNA damage by secreting a peptide that facilitates resistance to DNA-damaging stress. Although it has been shown that GAPDH possesses many key functions in cells aside from its well-established role in glycolysis, this study demonstrated that GAPDH is also involved in the social behaviors response to DNA-damaging stress. The study opens the gate to an interesting research field about microbial social activity for adaptation to a harsh environment.


2020 ◽  
Vol 31 (10) ◽  
pp. 1069-1084 ◽  
Author(s):  
Heidi M. Blank ◽  
Ophelia Papoulas ◽  
Nairita Maitra ◽  
Riddhiman Garge ◽  
Brian K. Kennedy ◽  
...  

In several systems, including budding yeast, cell cycle-dependent changes in the transcriptome are well studied. In contrast, few studies queried the proteome during cell division. There is also little information about dynamic changes in metabolites and lipids in the cell cycle. Here, the authors present such information for dividing yeast cells.


2020 ◽  
Vol 117 (29) ◽  
pp. 17031-17040 ◽  
Author(s):  
Allegra Terhorst ◽  
Arzu Sandikci ◽  
Abigail Keller ◽  
Charles A. Whittaker ◽  
Maitreya J. Dunham ◽  
...  

Aneuploidy, a condition characterized by whole chromosome gains and losses, is often associated with significant cellular stress and decreased fitness. However, how cells respond to the aneuploid state has remained controversial. In aneuploid budding yeast, two opposing gene-expression patterns have been reported: the “environmental stress response” (ESR) and the “common aneuploidy gene-expression” (CAGE) signature, in which many ESR genes are oppositely regulated. Here, we investigate this controversy. We show that the CAGE signature is not an aneuploidy-specific gene-expression signature but the result of normalizing the gene-expression profile of actively proliferating aneuploid cells to that of euploid cells grown into stationary phase. Because growth into stationary phase is among the strongest inducers of the ESR, the ESR in aneuploid cells was masked when stationary phase euploid cells were used for normalization in transcriptomic studies. When exponentially growing euploid cells are used in gene-expression comparisons with aneuploid cells, the CAGE signature is no longer evident in aneuploid cells. Instead, aneuploid cells exhibit the ESR. We further show that the ESR causes selective ribosome loss in aneuploid cells, providing an explanation for the decreased cellular density of aneuploid cells. We conclude that aneuploid budding yeast cells mount the ESR, rather than the CAGE signature, in response to aneuploidy-induced cellular stresses, resulting in selective ribosome loss. We propose that the ESR serves two purposes in aneuploid cells: protecting cells from aneuploidy-induced cellular stresses and preventing excessive cellular enlargement during slowed cell cycles by down-regulating translation capacity.


2015 ◽  
Vol 11 (2) ◽  
pp. 379-383 ◽  
Author(s):  
C. Airoldi ◽  
F. Tripodi ◽  
C. Guzzi ◽  
R. Nicastro ◽  
P. Coccetti

We present a rapid and reproducible protocol for intracellular metabolite extraction from yeast cells analyzed by1H-NMR spectroscopy.


1996 ◽  
Vol 16 (6) ◽  
pp. 2878-2887 ◽  
Author(s):  
X Liu ◽  
J Bowen ◽  
M A Gorovsky

H2A.F/Z histones are conserved variants that diverged from major H2A proteins early in evolution, suggesting they perform an important function distinct from major H2A proteins. Antisera specific for hv1, the H2A.F/Z variant of the ciliated protozoan Tetrahymena thermophila, cross-react with proteins from Saccharomyces cerevisiae. However, no H2A.F/Z variant has been reported in this budding yeast species. We sought to distinguish among three explanations for these observations: (i) that S. cerevisiae has an undiscovered H2A.F/Z variant, (ii) that the major S. cerevisiae H2A proteins are functionally equivalent to H2A.F/Z variants, or (iii) that the conserved epitope is found on a non-H2A molecule. Repeated attempts to clone an S. cerevisiae hv1 homolog only resulted in the cloning of the known H2A genes yHTA1 and yHTA2. To test for functional relatedness, we attempted to rescue strains lacking the yeast H2A genes with either the Tetrahymena major H2A genes (tHTA1 or tHTA2) or the gene (tHTA3) encoding hv1. Although they differ considerably in sequence from the yeast H2A genes, the major Tetrahymena H2A genes can provide the essential functions of H2A in yeast cells, the first such case of trans-species complementation of histone function. The Tetrahymena H2A genes confer a cold-sensitive phenotype. Although expressed at high levels and transported to the nucleus, hv1 cannot replace yeast H2A proteins. Proteins from S. cerevisiae strains lacking yeast H2A genes fail to cross-react with anti-hv1 antibodies. These studies make it likely that S. cerevisiae differs from most other eukaryotes in that it does not have an H2A.F/Z homolog. A hypothesis is presented relating the absence of H2A.F/Z in S. cerevisiae to its function in other organisms.


Sign in / Sign up

Export Citation Format

Share Document