The softwood fracture mechanisms at the scales of the growth ring and cell wall under bend loading

2019 ◽  
Vol 53 (6) ◽  
pp. 1295-1310
Author(s):  
Dong Wang ◽  
Lanying Lin ◽  
Feng Fu ◽  
Mizi Fan
Holzforschung ◽  
2020 ◽  
Vol 74 (7) ◽  
pp. 715-724 ◽  
Author(s):  
Dong Wang ◽  
Lanying Lin ◽  
Feng Fu ◽  
Mizi Fan

AbstractThis study was undertaken to elucidate the longitudinal tensile fracture behaviors of softwood at the cell wall scale by means of microscopic analyses. The fracture types of the tracheids at the different fracture surfaces were also distinguished. The results indicated that the main tracheid fracture of the earlywood (EW) sample was transverse transwall breakage. The tracheid fracture process of the transverse transwall breakage was initiated as a fracture in the S2 layer, with the crack propagating into the S1/S2 interface. For the EW/latewood (LW) sample, the strain concentration and initial crack under longitudinal tensile load generally occurred in wood rays in the EW part, which caused the tracheids to experience transverse transwall breakage. The differences in longitudinal and transverse strains between EW and LW under longitudinal tensile load led to shear stress and parallel-to-grain cracks occurring at the growth ring border. When the crack propagated along the wood grain in the EW tissue or growth ring boundary, this resulted in EW longitudinal transwall breakage. However, when the crack propagates along the wood grain in the LW tissue, it could cause the LW tracheid to undergo intrawall breakage, with the crack occurring predominantly at the compound middle lamella (CML)/S1 interface region.


Holzforschung ◽  
2009 ◽  
Vol 63 (4) ◽  
Author(s):  
Stefanie Stanzl-Tschegg ◽  
Wilfried Beikircher ◽  
Dieter Loidl

Abstract Thermal modification is a well established method to improve the dimensional stability and the durability for outdoor use of wood. Unfortunately, these improvements are usually accompanied with a deterioration of mechanical performance (e.g., reduced strength or higher brittleness). In contrast, our investigations of the hardness properties in the longitudinal direction of beech wood revealed a significant improvement with thermal modification. Furthermore, we applied instrumented indentation tests on different hierarchical levels of wood structure (growth ring and cell wall level) to gain closer insights on the mechanisms of thermal treatment of wood on mechanical properties. This approach provides a variety of mechanical data (e.g., elastic parameters, hardness parameters, and viscoelastic properties) from one single experiment. Investigations on the influence of thermal treatment on the mechanical properties of beech revealed similar trends on the growth ring as well as the on the cell wall level of the wood structure.


IAWA Journal ◽  
1997 ◽  
Vol 18 (3) ◽  
pp. 281-290 ◽  
Author(s):  
Shinya Koga ◽  
Kazuyuki Oda ◽  
Juichi Tsutsumi ◽  
Takaaki Fujimoto

The objective of this study was to determine the effect of thinning on the annual ring structure and the cross-sectional dimensions of tracheids in plantation-grown Japanese larch (Larix leptolepis). Annual ring width, earlywood width and latewood width increased significantly after thinning. The width of the band of nonflat latewood tracheids in the annual ring increased more than that of flat latewood tracheids. Thinning did not significantly affect latewood percentage. The average radial diameter of both earlywood and latewood tracheids increased after thinning. After thinning, average wall thickness of earlywood tracheids increased, while that of latewood tracheids decreased. Cell wall percentage in earlywood was not influenced significantly by thinning, but latewood cell wall percentage decreased. The changes of the average radial tracheid diameter, the average wall thickness of tracheids and cell wall percentage from earlywood to latewood within a growth ring became more gradual after thinning. However, thinning did not affect significantly the cell wall percentage of the whole growth ring. This study suggests that thinning has little effect on wood density of the whole growth ring in Japanese larch.


Holzforschung ◽  
2009 ◽  
Vol 63 (4) ◽  
Author(s):  
Peter Prislan ◽  
Gerald Koch ◽  
Katarina Čufar ◽  
Jožica Gričar ◽  
Uwe Schmitt

Abstract Formation and lignification of xylem cells in mature beech (Fagus sylvatica L.) trees growing in a forest site in Slovenia (46° N, 14°40′ E, 400 m a.s.l.) were studied on the cellular and subcellular level. Samples containing the cambial zone and developing xylem were taken from six beech trees every week throughout the 2006 vegetation period. Cell wall thickening and lignification in individual cell wall layers and cell types were determined by light microscopy, cellular UV-microspectrophotometry and transmission electron microscopy, respectively. Cell division started between the 18th and the 24th of April 2006. Lignification began in the newly formed xylem tissue on the 2nd of May. After 1 month, the developing earlywood portion contained fully differentiated vessels with completed wall deposition and lignification, and differentiated fibres and axial parenchyma became visible after 2 months. At the end of cambial cell division on the 9th August, the differentiation of the most recently formed fibres in the terminal zone of the growth ring continued for approximately 4 weeks. This indicates that the process of lignification in earlywood is slower than in latewood. The high temporal resolution of the investigated processes and the combination of the above-mentioned microscopic techniques provides a detailed insight into the process of cell wall thickening and lignification of woody tissue in beech.


2014 ◽  
Vol 11 (95) ◽  
pp. 20140126 ◽  
Author(s):  
Ahmad Rafsanjani ◽  
Michael Stiefel ◽  
Konstantins Jefimovs ◽  
Rajmund Mokso ◽  
Dominique Derome ◽  
...  

We document the hygroscopic swelling and shrinkage of the central and the thickest secondary cell wall layer of wood (named S2) in response to changes in environmental humidity using synchrotron radiation-based phase contrast X-ray tomographic nanoscopy. The S2 layer is a natural fibre-reinforced nano-composite polymer and is strongly reactive to water. Using focused ion beam, micropillars with a cross section of few micrometres are fabricated from the S2 layer of the latewood cell walls of Norway spruce softwood. The thin neighbouring cell wall layers are removed to prevent hindering or restraining of moisture-induced deformation during swelling or shrinkage. The proposed experiment intended to get further insights into the microscopic origin of the anisotropic hygro-expansion of wood. It is found that the swelling/shrinkage strains are highly anisotropic in the transverse plane of the cell wall, larger in the normal than in the direction parallel to the cell wall's thickness. This ultrastructural anisotropy may be due to the concentric lamellation of the cellulose microfibrils as the role of the cellulose microfibril angle in the transverse swelling anisotropy is negligible. The volumetric swelling of the cell wall material is found to be substantially larger than the one of wood tissues within the growth ring and wood samples made of several growth rings. The hierarchical configuration in wood optimally increases its dimensional stability in response to a humid environment with higher scales of complexity.


IAWA Journal ◽  
2016 ◽  
Vol 37 (3) ◽  
pp. 383-401 ◽  
Author(s):  
Jong Sik Kim ◽  
Geoffrey Daniel

Although there is considerable information on anatomy and gross chemistry of oak wood, little is known on the ultrastructure and chemistry at the individual cell wall level. In particular, differences in ultrastructure and chemistry within the same cell type between earlywood (EW) and latewood (LW) are poorly understood. This study investigated the ultrastructure and chemistry of (vasicentric) tracheids, vessels, (libriform) fibers and axial/ray parenchyma cells of English oak xylem (Quercus robur L.) using light-, fluorescence- and transmission electron microscopy combined with histo/cytochemistry and immunohisto/ cytochemistry. EW tracheids showed several differences from LW tracheids including thinner cell walls, wider middle lamella cell corner (MLcc) regions and lesser amounts of mannan epitopes. Fibers showed thicker cell walls and higher amounts of mannan epitopes than tracheids. EW vessels were rich in guaiacyl (G) lignin with a characteristic non-layered cell wall organization (absence of S1–3 layers), whereas LW vessels were rich in syringyl (S) lignin with a three layered cell wall structure (S1–3 layers). Formation of a highly lignified and wide protective layer (PL) inside axial/ray parenchyma cells was detected only in EW. Distribution of mannan epitopes varied greatly between cell types and between EW and LW, whereas distribution of xylan epitopes was almost identical in all cell types within a growth ring. Together, this study demonstrates that there are great variations in ultrastructure and chemistry of cell walls within a single growth ring of English oak xylem.


2021 ◽  
Author(s):  
Sathish Thiyagarajan ◽  
Zachary A McDargh ◽  
Shuyuan Wang ◽  
Ben O'Shaughnessy

In common with other cellular machineries, the actomyosin contractile ring that divides cells during cytokinesis does not operate in isolation. Contractile rings in animal cells interact with contiguous actomyosin cortex, while ring constriction in many cell-walled organisms couples tightly to cell wall growth. In fission yeast, a septum grows in the wake of the constricting ring, ensuring cytokinesis leaves two daughter cells fully enclosed by cell wall. Here we mathematical modeled the integrated constriction-septation system in fission yeast, with a kinetic growth model evolving the 3D septum shape coupled to a molecularly explicit simulation of the contractile ring highly constrained by experimental data. Simulations revealed influences in both directions, stabilizing the ring-septum system as a whole. By providing a smooth circular anchoring surface for the ring, the inner septum leading edge stabilized ring organization and tension production; by mechanically regulating septum circularity and in-plane growth, ring tension stabilized septum growth and shape. Genetic or pharmacological perturbation of either subsystem destabilized this delicate balance, precipitating uncontrolled positive feedback with disastrous morphological and functional consequences. Thus, high curvature septum irregularities triggered bridging instabilities, in which contractile ring segments became unanchored. Bridging abolished the local tension-mediated septum shape regulation, exacerbating the irregularity in a mutually destabilizing runaway process. Our model explains a number of previously mysterious experimental observations, including unanchoring of ring segments observed in cells with mutations in the septum-growing β-glucan synthases, and irregular septa in cells with mutations in the contractile ring myosin-II Myo2. Thus, the contractile ring and cell wall growth cellular machineries operate as a single integrated system, whose stability relies on mutual regulation by the two subsystems.


IAWA Journal ◽  
1994 ◽  
Vol 15 (4) ◽  
pp. 399-406 ◽  
Author(s):  
Shuichi Noshiro ◽  
Tomoyuki Fujii

Fusiform parenchyma cells found in several genera of Pinaceae are described and compared with marginal parenchyma. Fusiform parenchyma cells are mostly fusiform in shape, with occasional smooth horizontal walls. They form discontinuous tangential bands in complete or incomplete circ1es in the innermost growth rings of Larix, Abies, and Tsuga. Fusiform parenchyma always contains resinous material, and is more conspicuous in branchwoods than in stem woods. Marginal parenchyma cells were observed in Cedrus, Keteleeria, Pseudolarix, and Pseudotsuga as well as in Larix, Abies, and Tsuga, and very rarely in Picea. Marginal parenchyma cells are scattered along growth ring boundaries. They are always in strands with nodular horizontal walls with conspicuous simple pits. Cell wall structure of these two types of parenchyma differs in the intensity of the birefringence of the secondary walls. Fusiform parenchyma cells are distinct from marginal parenchyma with which they were previously confused, and should be regarded as a new component of coniferous wood.


1997 ◽  
Vol 161 ◽  
pp. 491-504 ◽  
Author(s):  
Frances Westall

AbstractThe oldest cell-like structures on Earth are preserved in silicified lagoonal, shallow sea or hydrothermal sediments, such as some Archean formations in Western Australia and South Africa. Previous studies concentrated on the search for organic fossils in Archean rocks. Observations of silicified bacteria (as silica minerals) are scarce for both the Precambrian and the Phanerozoic, but reports of mineral bacteria finds, in general, are increasing. The problems associated with the identification of authentic fossil bacteria and, if possible, closer identification of bacteria type can, in part, be overcome by experimental fossilisation studies. These have shown that not all bacteria fossilise in the same way and, indeed, some seem to be very resistent to fossilisation. This paper deals with a transmission electron microscope investigation of the silicification of four species of bacteria commonly found in the environment. The Gram positiveBacillus laterosporusand its spore produced a robust, durable crust upon silicification, whereas the Gram negativePseudomonas fluorescens, Ps. vesicularis, andPs. acidovoranspresented delicately preserved walls. The greater amount of peptidoglycan, containing abundant metal cation binding sites, in the cell wall of the Gram positive bacterium, probably accounts for the difference in the mode of fossilisation. The Gram positive bacteria are, therefore, probably most likely to be preserved in the terrestrial and extraterrestrial rock record.


Author(s):  
D. James Morré ◽  
Charles E. Bracker ◽  
William J. VanDerWoude

Calcium ions in the concentration range 5-100 mM inhibit auxin-induced cell elongation and wall extensibility of plant stems. Inhibition of wall extensibility requires that the tissue be living; growth inhibition cannot be explained on the basis of cross-linking of carboxyl groups of cell wall uronides by calcium ions. In this study, ultrastructural evidence was sought for an interaction of calcium ions with some component other than the wall at the cell surface of soybean (Glycine max (L.) Merr.) hypocotyls.


Sign in / Sign up

Export Citation Format

Share Document