Ectoine Effect on Mechanical Properties of Vesicles in Aqueous Solution

Author(s):  
Min Kyeong Kang ◽  
Jin-Won Park
Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1706
Author(s):  
Elena Olăreț ◽  
Brîndușa Bălănucă ◽  
Andra Mihaela Onaș ◽  
Jana Ghițman ◽  
Horia Iovu ◽  
...  

Mucin is a glycoprotein with proven potential in the biomaterials field, but its use is still underexploited for such applications. The present work aims to produce a synthesis of methacryloyl mucin single-network (SN) hydrogels and their double-cross-linked-network (DCN) counterparts. Following the synthesis of the mucin methacryloyl derivative, various SN hydrogels are prepared through the photopolymerization of methacrylate bonds, using reaction media with different pH values. The SN hydrogels are converted into DCN systems via supplementary cross-linking in tannic acid aqueous solution. The chemical modification of mucin is described, and the obtained product is characterized; the structural modification of mucin is assessed through FTIR spectroscopy, and the circular dichroism and the isoelectric point of methacryloyl mucin is evaluated. The affinity for aqueous media of both SN and DCN hydrogels is estimated, and the mechanical properties of the systems are assessed, both at macroscale through uniaxial compression and rheology tests and also at microscale through nanoindentation tests.


2008 ◽  
Vol 1 (2) ◽  
pp. 113-120 ◽  
Author(s):  
A. C. Marques ◽  
J. L. Akasaki ◽  
A. P. M. Trigo ◽  
M. L. Marques

In this work it was evaluated the influence tire rubber addition in mortars in order to replace part of the sand (12% by volume). It was also intended to verify if the tire rubber treatment with NaOH saturated aqueous solution causes interference on the mechanical properties of the mixture. Compressive strength, splitting tensile strength, water absorption, modulus of elasticity, and flow test were made in specimens of 5cmx10cm and the tests were carried out to 7, 28, 56, 90, and 180 days. The results show reduction on mechanical properties values after addition of tire rubber and decrease of the workability. It was also observed that the tire rubber treatment does not cause any alteration on the results compared to the rubber without treatment.


Holzforschung ◽  
2015 ◽  
Vol 69 (2) ◽  
pp. 215-221 ◽  
Author(s):  
Haitao Cheng ◽  
Jie Gao ◽  
Ge Wang ◽  
Sheldon Q. Shi ◽  
Shuangbao Zhang ◽  
...  

Abstract The work aimed at the improvement of the mechanical properties of bamboo fiber-polypropylene composites (BaFPPC) by treatment of the fibers with CaCO3 at various concentrations of the solution (0.05, 0.1, 0.2, and 0.3 mol l-1). CaCO3 particles were successfully deposited in situ to bamboo fibers by means of ionic reaction of Na2 CO3 and CaCl2 aqueous solution at various temperatures. Then BaFPPC were produced, and various tests on single fibers and the composites were performed. The compatibility between BaF and PP matrix was improved by the treatments. The crystallinity of inorganic materials was significantly affected by the reagent’s concentration. A 10.4% increase in tensile strength and a 16.7% increase in tensile modulus were observed after fiber treatment with CaCO3 at a concentration of 0.2 mol l-1.


2020 ◽  
Vol 861 ◽  
pp. 383-387
Author(s):  
Nantharat Phruksaphithak ◽  
Nophadon Goomuang ◽  
Nattawut Jaema

The effect of cellulose from oil palm trunk (OPT) concentrations (1, 3, 5, and 7 wt %), which were treated various times with urea mixed in NaOH aqueous solution on fabricating cellulose film, were studied. The results showed cellulose from OPT film was successfully prepared through cellulose was dissolved in 7wt% NaOH/12wt% urea aqueous solution at 4°C. The function group was evaluated by FTIR, whereas the physical properties were observed by a camera. The photographs of cellulose film concluded that 5wt% cellulose from OPT had a smoother surface than other ratios. The FTIR result showed that the vibration peak confirmed that cellulose from OPT successfully produced cellulose film. The mechanical properties result showed that urea mixed into cellulose/NaOH suspension after 24 hr presented better mechanical properties than urea mixed immediately. This research provided a friendly environmental system for the preparation of the packaging films.


2013 ◽  
Vol 821-822 ◽  
pp. 23-27
Author(s):  
Xiang Li ◽  
Chun Yi Liu ◽  
Ai Wen Qin ◽  
Xin Zhen Zhao ◽  
Chun Ju He

Plasticized polyacrylonitrile(PAN) fibers have been chemically impregnated with aqueous solution of KMnO4under varying conditions of temperature and time. The effect of modification conditions on the chemical structure and the mechanical properties of precursor fibers are characterized by wide-angle X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscope. The experimental results show that KMnO4can be used not only as catalyst for cyclization reaction, but also as plasticizer. The chemical modification between KMnO4and PAN can not occur below70°C, the most suitable condition for modification is performed at 80°C for 5 min.


1977 ◽  
Vol 47 (5) ◽  
pp. 328-332 ◽  
Author(s):  
S. M. Betrabet ◽  
E. H. Daruwalla ◽  
S. M. Doshi

Application of DMDHEU from a kerosene-water emulsion system at different levels of water content in the system has been examined with respect to the extent of crosslinking and mechanical properties of the finished fabrics. As the water content of the treating bath is decreased, both wet and dry wrinkle-recovery angles, bound nitrogen, and bound HCHO in the crosslinked fabric increase, but there is no improvement noticed in the wrinkle-recovery/mechanical properties relationship. The increase in the extent of cross linking during application from the emulsion system appears to be due to preferential uptake of the aqueous solution containing the crosslinking agent from the emulsion system.


Author(s):  
Hoang-Linh Nguyen ◽  
Zahid Hanif ◽  
Seul-A. Park ◽  
Bong Gill Choi ◽  
Thang Hong Tran ◽  
...  

Herein, we introduce a boron nitride nanosheet (BNNS)-reinforced cellulose nanofiber (CNF) film as a sustainable oxygen barrier film that can potentially be applied in food packaging. Most of commodity plastics are oxygen-permeable. CNF exhibits an ideal oxygen transmittance rate (OTR) of <1 cc/m2/day in highly controlled conditions. A CNF film typically fabricated by the air drying of a CNF aqueous solution reveals an OTR of 19.08 cc/m2/day. The addition of 0-5 wt% BNNS to the CNF dispersion before drying results in a composite film with highly improved OTR, 4.7 cc/m2/day, which is sufficient for meat and cheese packaging. BNNS as a 2D nanomaterial increases the pathway of oxygen gas and reduces the chances of pin-hole formation during film fabrication involving water drying. In addition, BNNS improves the mechanical properties of the CNF films (Young’s modulus and tensile strength) without significant elongation reductions, probably due to the good miscibility of CNF and BNNS in the aqueous solution. BNNS addition also produces negligible color change, which is important for film aesthetics. An in vitro cell experiment was performed to reveal the low cytotoxicity of the CNF/BNNS composite. This composite film has great potential as a sustainable high-performance food packaging material.


Vestnik MGSU ◽  
2017 ◽  
pp. 642-646
Author(s):  
Natalia Shamilievna Lebedeva ◽  
Evgeniy Gennadievich Nedayvodin

Obtained building material based on magnesia binder with different content of peat (0 to 90 %), on a specially developed technique. As a binder used PMK 87, for mixing mixtures used aqueous solution of magnesium chloride and peat from the Ivanovo region. It were determined such physical and physico-mechanical properties of the investigated material as the compressive strength and the density. The strength characteristics of silicate bricks, ceramic bricks and the investigated material based on magnesia binder and peat was analyzed and compared. It is established that the samples of construction material with content of peat not exceeding 40 wt.% can be attributed to the materials of structural purpose by its compressive strength. Samples of the material with content of the peat 40% have a density 943,75 kg/m3, that provides good heat and sound insulation properties. It is revealed that the solution of the raw material mixture of magnesia binder, peat, the solution of bischofite is optimized to place, and the material gets at least 85% of its strength during 30 days.


2019 ◽  
Vol 64 (2) ◽  
pp. 265-270
Author(s):  
Andrea Balla ◽  
János Moczó ◽  
Zoltán Károly

Ni0,4Co0,2Zn0,4Fe2O4 spinel ferrites have been synthesized by precipitation method from an aqueous solution and bulk samples were fabricated by Spark Plasma Sintering (SPS) to investigate the microstructure and the mechanical properties. Although SPS is considered as a rapid compaction technique, its application is uncommon for ferrites due to reactions occurring between the graphite die and the ferrite powder at elevated temperature. In our tests this problem was circumvented by an alumina film applied on the die. We found that both chemical and phase composition could be retained in the sintered specimens after sintering. In addition, they exhibited improved mechanical properties in terms of hardness (10 GPa) and fracture toughness (2.7 MPa · m−1/2) as compared to conventionally sintered reference samples.


Sign in / Sign up

Export Citation Format

Share Document