scholarly journals Effects of Tilletia foetida on Microbial Communities in the Rhizosphere Soil of Wheat Seeds Coated with Different Concentrations of Jianzhuang

2021 ◽  
Author(s):  
Ghulam Muhae Ud Din ◽  
Zhenzhen Du ◽  
Han Zhang ◽  
Sifeng Zhao ◽  
Taiguo Liu ◽  
...  

AbstractTilletia foetida (syn. T. laevis) leads to wheat common bunt, a worldwide disease that can lead to 80% yield loss and even total loss of production, together with degrading the quality of grains and flour by producing a rotten fish smell. To explore the potential microbial community that may contribute to the control of soil- and seed-borne pathogens, in this study, we analyzed the effects of the plant pathogenic fungus T. foetida on rhizosphere soil microorganisms in wheat seeds coated with different concentrations of a fungicide (Jianzhuang) used to control the disease. To analyze the bacterial and fungal abundance in T. foetida-infected and mock-infected plants, the microorganisms were sequenced using high-throughput HiSeq 2500 gene sequencing. The results showed that bacterial communities, including Verrucomicrobia, Patescibacteria, Armatimonadetes, Nitrospirae, Fibrobacteres, Chlamydiae, and Hydrogenedentes, and fungal communities, including Basidiomycota and Ciliophora, were more prevalent in the mock group than in the T. foetida-infected group, which may contribute to the control of wheat common bunt. Moreover, cluster and PCoA analysis revealed that replicates of the same samples were clustered together, and these results were also found in the distance index within-group analysis for bacterial and fungal communities in the T. foetida-infected and mock groups.

2021 ◽  
Vol 11 ◽  
Author(s):  
Yanru Chen ◽  
Kaimin Li ◽  
Ting Liu ◽  
Ruyi Li ◽  
Guiming Fu ◽  
...  

Special-flavor Baijiu is a unique Baijiu in Jiangxi Province, China, whose uniqueness mainly depends on the unique production process of special-flavor Baijiu Daqu. However, the microbial structure and physicochemical indices of different parts of the special-flavor Baijiu Daqu are still unknown. This greatly reduces the actual value of Daqu in the production of special-flavor Baijiu. Therefore, culture-dependent and Illumina MiSeq sequencing methods were used to analyze the microbial structure of special-flavor Baijiu Daqu. The results indicated that there was a complicated microbial diversity in Chinese special-flavor Baijiu Daqu. The predominant bacterial communities were Bacillales, Lactobacillales, and Rhodospirillales, while Saccharomycetales and Eurotiales were the predominant fungal communities. Significant differences in microbial community and distribution were shown between the surface and central parts of Daqu. Acetobacter and Pichia genera were the predominant microorganisms in the surface part of Daqu, whereas Aspergillus, Kroppenstedtia, Oceanobacillus, and Bacillus genera were the predominant microorganisms in the central part of Daqu. Meantime, the different microbial distributions between the surface and central parts of Daqu caused the significant differences in the physicochemical indices. These results can provide an important theoretical basis for improving the brewing process and the quality of special-flavor Baijiu.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chao Ji ◽  
Xiaohui Wang ◽  
Xin Song ◽  
Qisheng Zhou ◽  
Chaohui Li ◽  
...  

Plant growth-promoting bacteria (PGPB) can effectively reduce salt damage in plants. Currently, there are many studies on the effects of PGPB on the microbial community structure of rhizosphere soil under salt stress, but fewer studies on the community structure of endophytic bacteria and fungi. We propose that inoculation of endophytic bacteria into the rhizosphere of plants can significantly affect the microbial community structure of the plant’s above-ground and underground parts, which may be the cause of the plant’s “Induced Systemic Tolerance.” The isolated endophytes were re-inoculated into the rhizosphere under salinity stress. We found that, compared with the control group, inoculation with endophytic Bacillus velezensis JC-K3 not only increased the accumulation of wheat biomass, but also increased the content of soluble sugar and chlorophyll in wheat, and reduced the absorption of Na in wheat shoots and leaves. The abundance of bacterial communities in shoots and leaves increased and the abundance of fungal communities decreased after inoculation with JC-K3. The fungal community richness of wheat rhizosphere soil was significantly increased. The diversity of bacterial communities in shoots and leaves increased, and the richness of fungal communities decreased. JC-K3 strain improved wheat’s biomass accumulation ability, osmotic adjustment ability, and ion selective absorption ability. In addition, JC-K3 significantly altered the diversity and abundance of endophytic and rhizosphere microorganisms in wheat. PGPB can effectively reduce plant salt damage. At present, there are many studies on the effect of PGPB on the microbial community structure in rhizosphere soil under salt stress, but there are few studies on the community structure changes of endophytic bacteria and fungi in plants.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1218
Author(s):  
Zoltán Mayer ◽  
Andrea Gógán Csorbainé ◽  
Ákos Juhász ◽  
Attila Ombódi ◽  
Antal Pápai ◽  
...  

The impact of chemical fertilization on rhizosphere soil communities is a growing concern due to the changes they cause on microbes in soil ecosystems. The present study aims to compare mycorrhizal inoculation and fertilizer applications on bacterial and fungal communities in rhizosphere soil of intensively cultivated Robinia pseudoacacia and Populus × euramericana plantations using the Illumina Miseq sequencing platform. Our results revealed that the different host plants and applied treatments did not significantly affect soil bacterial diversity, but interfered with native rhizosphere bacterial communities in plantation sites. In contrast, host plants and inorganic fertilizer had a strong effect at the family and genus level on the composition of soil fungal communities. In conclusion, our findings suggest that the structure and composition of the fungal community are more sensitive to the nutrient sources in soil than bacteria.


2021 ◽  
Vol 22 (7) ◽  
pp. 3438
Author(s):  
Juan Liu ◽  
Xiangwei He ◽  
Jingya Sun ◽  
Yuchao Ma

Bacterial communities associated with roots influence the health and nutrition of the host plant. However, the microbiome discrepancy are not well understood under different healthy conditions. Here, we tested the hypothesis that rhizosphere soil microbial diversity and function varies along a degeneration gradient of poplar, with a focus on plant growth promoting bacteria (PGPB) and antibiotic resistance genes. Comprehensive metagenomic analysis including taxonomic investigation, functional detection, and ARG (antibiotics resistance genes) annotation revealed that available potassium (AK) was correlated with microbial diversity and function. We proposed several microbes, Bradyrhizobium, Sphingomonas, Mesorhizobium, Nocardioides, Variovorax, Gemmatimonadetes, Rhizobacter, Pedosphaera, Candidatus Solibacter, Acidobacterium, and Phenylobacterium, as candidates to reflect the soil fertility and the plant health. The highest abundance of multidrug resistance genes and the four mainly microbial resistance mechanisms (antibiotic efflux, antibiotic target protection, antibiotic target alteration, and antibiotic target replacement) in healthy poplar rhizosphere, corroborated the relationship between soil fertility and microbial activity. This result suggested that healthy rhizosphere soil harbored microbes with a higher capacity and had more complex microbial interaction network to promote plant growing and reduce intracellular levels of antibiotics. Our findings suggested a correlation between the plant degeneration gradient and bacterial communities, and provided insight into the role of high-turnover microbial communities as well as potential PGPB as real-time indicators of forestry soil quality, and demonstrated the inner interaction contributed by the bacterial communities.


2019 ◽  
Author(s):  
Di Liu ◽  
Qinglin Chen ◽  
Pangzhen Zhang ◽  
Deli Chen ◽  
Kate S. Howell

AbstractThe flavours of foods and beverages are formed by the agricultural environment where the plants are grown. In the case of wine, the location and environmental features of the vineyard site imprint the wine with distinctive aromas and flavours. Microbial growth and metabolism play an integral role in wine production from the vineyard to the winery, by influencing grapevine health, wine fermentation, and the flavour, aroma and quality of finished wines. The mechanism by which microbial distribution patterns drive wine metabolites is unclear and while flavour has been correlated with bacterial composition for red wines, bacterial activity provides a minor biochemical conversion in wine fermentation. Here, we collected samples across six distinct winegrowing areas in southern Australia to investigate regional distribution patterns of both fungi and bacteria and how this corresponds with wine aroma compounds. Results show that soil and must microbiota distinguish winegrowing regions and are related to wine chemical profiles. We found a strong relationship between microbial and wine metabolic profiles, and this relationship was maintained despite differing abiotic drivers (soil properties and weather/ climatic measures). Notably, fungal communities played the principal role in shaping wine aroma profiles and regional distinctiveness. We found that the soil microbiome is a potential source of grape- and must-associated fungi, and therefore the weather and soil conditions could influence the wine characteristics via shaping the soil fungal community compositions. Our study describes a comprehensive scenario of wine microbial biogeography in which microbial diversity responds to surrounding environments and ultimately sculpts wine aromatic characteristics. These findings provide perspectives for thoughtful human practices to optimise food and beverage flavour and composition through understanding of fungal activity and abundance.


Author(s):  
S. Liskovskiy ◽  
◽  
O. Demydov ◽  
A. Siroshtan ◽  
O. Zaiima ◽  
...  
Keyword(s):  

2013 ◽  
Vol 4 (2) ◽  
pp. 98-106
Author(s):  
Vinícius Almeida Oliveira ◽  
Lorenxo Paradiso Martins ◽  
Rogério Cavalcante Gonçalves ◽  
Luíz Paulo Figueredo Benício ◽  
Daniella Lima da Costa ◽  
...  

The fungus are the main microorganisms present in seeds, is the main cause of deterioration and loss in production. The anthracnose caused by C. truncatum associated with soybean seeds as has main vehicle for introduction into the planting areas can be detected in all stages of crop development, from the cotyledons to the end of the cycle, being present in the stems, veins, leaflets and pods. Thus aimed to evaluate the influence of using different products fungicides as seed treatment, where the seeds were inoculated with the pathogenic fungus and treated with the chemicals They take Carbedazim + Fludioxonil + metalaxyl-M and carboxin + thiram. For each fungicide product was two tramentos done using the doses recommended by the manufacturer and 75% of dose. We evaluated health, germination and promote plant (Plant growth, fresh weight and dry weight of root and shoot). This work concludes that the use of fungicide controls significantly seeds infected with C. truncatum and presents a significant improvement as the development of structures seedling.


2021 ◽  
Vol 43 ◽  
Author(s):  
Carolina Pereira Cardoso ◽  
José Henrique Bizzarri Bazzo ◽  
Jéssica de Lucena Marinho ◽  
Claudemir Zucareli

Abstract: Initial seed vigor and sowing density interact in establishment of plants in the field, and can thus affect expression of the plasticity of the wheat crop and the yield and physiological quality of the seeds produced. The aim of this study was to evaluate the effect of seed vigor levels in combination with sowing densities on the yield and physiological potential of wheat seeds. The cultivars BRS Gralha-Azul and BRS Sabiá were used in a randomized block experimental design in a 2 × 4 factorial arrangement, with four replications. The treatments consisted of seeds of high and low vigor and four sowing densities (150, 250, 350, and 450 seeds.m-2). The following evaluations were made: seed yield, germination, first germination count, seedling length, seedling dry matter, accelerated aging, emergence speed index, and seedling emergence in sand. An increase in sowing density favors the seed yield of both cultivars; however, it reduces the vigor of the seeds produced by the cultivar BRS Gralha-Azul, especially of the seeds produced by plants originating from high vigor seeds. For the cultivar BRS Sabiá, an increase in sowing density decreases the germination performance of seeds produced by plants originating from low vigor seeds.


Sign in / Sign up

Export Citation Format

Share Document