Ex vivo detection of primary leukemia cells resistant to granule cytotoxin-induced cell death: a rapid isolation method to study granzyme-B-mediated cell death

2008 ◽  
Vol 87 (9) ◽  
pp. 701-708 ◽  
Author(s):  
Carsten Grüllich ◽  
Viktoria Friske ◽  
Jürgen Finke
Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1426-1426
Author(s):  
Yachiyo Kuwatsuka ◽  
Yosuke Minami ◽  
Ryohei Tanizaki ◽  
Miho Minami ◽  
Akihiro Abe ◽  
...  

Abstract Abstract 1426 Poster Board I-449 Recent studies suggest that leukemia stem cells (LSCs) are responsible for relapse of leukemia following conventional or targeted agents and that eradication of LSCs might be necessary to cure the disease. In order to examine mechanisms of drug resistance in LSCs and to seek strategies to overcome the resistance, we used Ph-positive acute lymphoblastic leukemia patient cells serially xenotransplanted into immunodeficient NOD/SCID/IL2rγnull (NOG) mice. Engrafted bone marrow and spleen cells were almost identical to the original leukemia cells as to phenotypes including karyotypes and distribution of primitive populations. Recently several publications have suggested that proteasome inhibitors can induce selective cell death in LSCs. Spleen cells derived from leukemic NOG mice were treated ex vivo with imatinib and the proteasome inhibitor, bortezomib and cell viablility (PI-/Annexin-V-) was compared between treated and non-treated cells. After treatment with imatinib, significantly more residual cells were observed in the CD34+CD38- population compared to the CD34+CD38+ or CD34-CD38+ populations. With nM level of bortezomib, substantial cell death was induced in all populations with up-regulation of phospho-p53 (Ser15). Phosphorylation of BCR-ABL and CrkL was completely inhibited in all populations with imatinib treatment, but not with bortezomib treatment. Regarding cell cycle states, a higher percentage of Hoechst-33342low/Pyronin-Ylow cells was observed in the CD34+CD38- population relative to the other populations, suggesting more cells in the G0 state among the CD34+CD38- population. In co-culturing with S17 stromal cells, quiescent (Hoechst-33342low/Pyronin-Ylow) CD34+ cells were insensitive to imatinib, while substantial cell death including CD34+ population was induced with nM level of bortezomib. We are also investigating more detailed biomarkers in the cell death and effects of these drugs both on the primitive leukemia cells and normal hematopoietic cells using the in vivo leukemic NOG mice systems. These results imply that resistance to imatinib in Ph-positive leukemia quiescent cells is independent of BCR-ABL phosphorylation and that treatment with bortezomib can overcome the resistance of Ph-positive LSCs. Disclosures Kiyoi: Kyowa Hakko Kirin: Consultancy. Naoe: Kyowa Hakko Kirin, Wyeth and Chugai: Research Funding.


2020 ◽  
Author(s):  
Kateřina Kuželová ◽  
Adam Obr ◽  
Pavla Röselová ◽  
Dana Grebeňová ◽  
Petra Otevřelová ◽  
...  

AbstractP21-activated kinases (PAK) regulate many processes associated with cytoskeleton dynamics, including cell adhesion, migration, and apoptosis. PAK function is frequently altered in cancer, and PAK were proposed as therapy targets both in solid tumors and in hematological malignancies. However, current knowledge about PAK function in cell adhesion is mainly based on adherent cell models. Moreover, existing functional differences among the individual PAK family members are unsufficiently characterized.We measured expression of PAK group I members in leukemia cell lines and in primary leukemia cells, both on protein and mRNA levels. In functional assays, we analyzed the effect of two PAK inhibitors with different mechanisms of action, IPA-3 and FRAX597. Changes in cell interaction with fibronectin were monitored through impedance measurement and by interference reflection microscopy. Cytotoxic effects of inhibitors were assessed by Annexin V/propidium iodide test. PAK intracellular localization was analyzed by confocal microscopy.PAK2 transcript was dominant in cell lines, whereas primary leukemia cells also expressed comparable amount of PAK1, which was detected as two transcription isoforms: PAK1-full and PAK1Δ15. PAK1Δ15 and PAK2 transcript levels correlated with surface density of integrins β1 and αVβ3. PAK1-full, but not PAK2, was present in membrane protrusions. The inhibitors had partly opposed effects: IPA-3, which prevents PAK activation, induced cell contraction in semi-adherent HEL cells only. FRAX597, which inhibits PAK kinase activity, increased cell-surface contact area in all leukemia cells. Both inhibitors reduced the stability of cell attachment and induced cell death. Although many cells accumulated high FRAX597 amounts, low doses were sufficient to kill sensitive cells. FRAX597-induced cell death was fast in the MV4-11 cell line and in primary AML cells.Although PAK group I seem to be essential for leukemia cell adhesion and survival, and might thus serve as therapy targets, many PAK functions still remain to be attributed to individual isoforms and to their functional domains.


2007 ◽  
Vol 15 (3) ◽  
pp. 567-579 ◽  
Author(s):  
J Pardo ◽  
R Wallich ◽  
P Martin ◽  
C Urban ◽  
A Rongvaux ◽  
...  
Keyword(s):  
Ex Vivo ◽  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4215-4215
Author(s):  
Patrick Jesse ◽  
Gritt Mottke ◽  
Georg Seifert ◽  
Simone Fulda ◽  
Guenter Henze ◽  
...  

Abstract Helleborus niger, also known as Christmas Rose, belongs to the family of Ranunculaceae, a family of flowering plants with about 2500 different species. In complementary medicine Helleborus niger is used as adjuvant drug in the treatment of non-metastasised and metastasised forms of bronchial cancer, abdominal tumours and prostate cancer. It is also applied in myeloproliferative diseases like Hodgkin and Non-Hodgkin lymphoma, leukaemic disorders and AIDS- related diseases like the Kaposi sarcoma. Until now, there is no clinical or preclinical data regarding the effects of Helleborus niger in vivo, ex vivo or in vitro. For this purpose, we investigated the cytotoxic effects of four different standardized aqueous Helleborus niger extracts from the companies Hiscia and Helixor on various cancer cell lines. We used one whole plant extract, one root extract, one leave extract and one containing only the blossom of Helleborus niger. After 4h of treatment with the extracts no significant LDH release was measured, thus excluding an unspecific, necrotic damage of the cell membrane. After 24h a dose dependent inhibition of proliferation up to 69% could be found and after 48h a distinction into early (45,2%) and late apoptotic (45,5%) cells was detected via Annexin/PI staining. The cell cycle analysis revealed characteristic hypodiploid DNA fragments after 72h, once more identifying apoptosis as cause of the cell death. In the Western Blot analysis a processing of Caspase-3 could be found after 36 h incubation with the extract. Apoptotic cell death was detected in the Burkitt-like lymphoma cell line BJAB, the three human acute lymphoblastic leukemia cell lines NALM-6, Sup-B-15 and REH and the melanoma cell line MEL-HO. The apoptosis induction caused by the root extract was higher than the apoptotic cell death in the other extracts. There are two major pathways of apoptosis, the extrinsic pathway via death receptors like FADD and the intrinsic pathway via the mitochondria. In BJAB cells a breakdown of the mitochondrial membrane potential and dose-dependent mitochondrial permeability transition was detected after 48h, revealing that apoptosis is executed via the mitochondrial pathway. Furthermore, we found a decreased apoptosis induction in BCL-2 overexpressing melanoma cells. The dependency of Bcl-2 expression is another sign of apoptosis via the mitochondrial pathway. In contrast, apoptosis induction by Helleborus niger seems to be independent of Smac overexpression, which could be shown in Jurkat cells. In combination with the vinca alkaloid vincristine, which is used in the treatment of ALL, a synergistic effect could be detected. The apoptosis induction was up to 16% higher in combination than in the single treatment. Finally, we evaluated the effect on primary leukemia cells ex vivo. Interestingly, we could show a significant apoptosis induction in primary leukemia cells from 2 patients with ALL or AML in childhood, which were resistant to the treatment with the anthracycline doxorubicin. For the first time, we were able to show that extracts of Helleborus niger induce apoptosis in different cancer cell lines and primary leukemia cells. Apoptosis is executed via the intrinsic pathway and is independent of Smac overexpression. Thus, we present an interesting baseline for the design of upcoming in vivo experiments or clinical trials.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2227-2227
Author(s):  
Jing Yu ◽  
Shaowei Qiu ◽  
Qiufu Ge ◽  
Ying Wang ◽  
Hui Wei ◽  
...  

Abstract Introduction Hybrid anticancer drugs are of great therapeutic interests as they can potentially overcome the flaws of conventional chemotherapy drugs and improve their efficacy. Histone deacetylase inhibitors (HDACi) and DNA damaging agents have showed synergistic effects in recent studies. In this study, we reported a novel hybrid NL-101 that combines chemo-active groups from suberoylanilide hydroxamic acid (SAHA) and bendamustine, the typical HDACi and alkylating agent respectively.The anticancer effect of NL-101 and its possible mechanisms were investigated in human leukemia cell lines and primary leukemia cells. Methods MTT assay was performed to determine the proliferation of Kasumi-1 and NB4 cells treated with NL-101. Cell cycle distribution and apoptosis rate were detected by flow cytometry. Western-blot analysis was used to analyze the level of acetylated H3 as well as apoptotic-related proteins including γ-H2AX, PARP, caspase-3, Bax, Bcl-2 and Bcl-xL. Bone marrow mononuclear cells of AML patients were isolated by density gradient centrifugation. Wright staining and Western blot were performed to determine the inducing apoptosis effect. Results NL-101 inhibited the proliferation of leukemia cell lines Kasumi-1 and NB4 cells with similar IC50 to that of SAHA. Cell cycle analysis indicated that NL-101 induced S phase arrest. As expected, apoptotic cell death was observed in response to NL-101 treatment. After treatment with 2 µmol/L NL-101 for 48 hours, the apoptosis rate of Kasumi-1 and NB4 cells were (60.19±12.01)% and (49.43±11.61)%, respectively. Western blot analysis showed that NL-101 exposure could induce the accumulation of acetylated Histone H3 and γ-H2AX as the biomarker of DNA double-strand breaks. Anti-apoptotic protein Bcl-xL involved in mitochondrial death pathway was also decreased. Moreover, NL-101 induced apoptosis with a low micromolar IC50 in various leukemia cell lines but not in nonmalignant cell line HEK293. The efficacy of NL-101 was also tested in human primary leukemia cells and all the treated samples exhibited apoptosis confirmed by the morphological examination and expression of apoptotic markers. Conclusions The novel SAHA-bendamustine hybrid NL-101 inhibited the proliferation and induced apoptotic cell death of leukemia cell lines and primary leukemia cells. It presented the properties of both HDAC inhibition and DNA damaging. Down-regulation of Bcl-xL was also involved in the apoptosis induction. These results indicated that NL-101 might be a potential compound for the treatment of leukemia. Disclosures Wang: Bristol Myers Squibb: Consultancy; Novartis: Consultancy.


2016 ◽  
Vol 16 (12) ◽  
pp. 1615-1621 ◽  
Author(s):  
Erik Andrade-Jorge ◽  
Marycarmen Godínez-Victoria ◽  
Luvia Enid Sánchez-Torres ◽  
Luis Humberto Fabila-Castillo ◽  
José G. Trujillo-Ferrara

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 665
Author(s):  
Margot S.F. Roeten ◽  
Johan van Meerloo ◽  
Zinia J. Kwidama ◽  
Giovanna ter Huizen ◽  
Wouter H. Segerink ◽  
...  

At present, 20–30% of children with acute leukemia still relapse from current chemotherapy protocols, underscoring the unmet need for new treatment options, such as proteasome inhibition. Ixazomib (IXA) is an orally available proteasome inhibitor, with an improved safety profile compared to Bortezomib (BTZ). The mechanism of action (proteasome subunit inhibition, apoptosis induction) and growth inhibitory potential of IXA vs. BTZ were tested in vitro in human (BTZ-resistant) leukemia cell lines. Ex vivo activity of IXA vs. BTZ was analyzed in 15 acute lymphoblastic leukemia (ALL) and 9 acute myeloid leukemia (AML) primary pediatric patient samples. BTZ demonstrated more potent inhibitory effects on constitutive β5 and immunoproteasome β5i proteasome subunit activity; however, IXA more potently inhibited β1i subunit than BTZ (70% vs. 29% at 2.5 nM). In ALL/AML cell lines, IXA conveyed 50% growth inhibition at low nanomolar concentrations, but was ~10-fold less potent than BTZ. BTZ-resistant cells (150–160 fold) displayed similar (100-fold) cross-resistance to IXA. Finally, IXA and BTZ exhibited anti-leukemic effects for primary ex vivo ALL and AML cells; mean LC50 (nM) for IXA: 24 ± 11 and 30 ± 8, respectively, and mean LC50 for BTZ: 4.5 ± 1 and 11 ± 4, respectively. IXA has overlapping mechanisms of action with BTZ and showed anti-leukemic activity in primary leukemic cells, encouraging further pre-clinical in vivo evaluation.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 898
Author(s):  
Brian H. Kim ◽  
Maciej Jeziorek ◽  
Hur Dolunay Kanal ◽  
Viorica Raluca Contu ◽  
Radek Dobrowolski ◽  
...  

Recent studies of cerebral hypoxia-ischemia (HI) have highlighted slowly progressive neurodegeneration whose mechanisms remain elusive, but if blocked, could considerably improve long-term neurological function. We previously established that the cytokine transforming growth factor (TGF)β1 is highly elevated following HI and that delivering an antagonist for TGFβ receptor activin-like kinase 5 (ALK5)—SB505124—three days after injury in a rat model of moderate pre-term HI significantly preserved the structural integrity of the thalamus and hippocampus as well as neurological functions associated with those brain structures. To elucidate the mechanism whereby ALK5 inhibition reduces cell death, we assessed levels of autophagy markers in neurons and found that SB505124 increased numbers of autophagosomes and levels of lipidated light chain 3 (LC3), a key protein known to mediate autophagy. However, those studies did not determine whether (1) SB was acting directly on the CNS and (2) whether directly inducing autophagy could decrease cell death and improve outcome. Here we show that administering an ALK5 antagonist three days after HI reduced actively apoptotic cells by ~90% when assessed one week after injury. Ex vivo studies using the lysosomal inhibitor chloroquine confirmed that SB505124 enhanced autophagy flux in the injured hemisphere, with a significant accumulation of the autophagic proteins LC3 and p62 in SB505124 + chloroquine treated brain slices. We independently activated autophagy using the stimulatory peptide Tat-Beclin1 to determine if enhanced autophagy is directly responsible for improved outcomes. Administering Tat-Beclin1 starting three days after injury preserved the structural integrity of the hippocampus and thalamus with improved sensorimotor function. These data support the conclusion that intervening at this phase of injury represents a window of opportunity where stimulating autophagy is beneficial.


Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 365
Author(s):  
Carina Colturato-Kido ◽  
Rayssa M. Lopes ◽  
Hyllana C. D. Medeiros ◽  
Claudia A. Costa ◽  
Laura F. L. Prado-Souza ◽  
...  

Acute lymphoblastic leukemia (ALL) is an aggressive malignant disorder of lymphoid progenitor cells that affects children and adults. Despite the high cure rates, drug resistance still remains a significant clinical problem, which stimulates the development of new therapeutic strategies and drugs to improve the disease outcome. Antipsychotic phenothiazines have emerged as potential candidates to be repositioned as antitumor drugs. It was previously shown that the anti-histaminic phenothiazine derivative promethazine induced autophagy-associated cell death in chronic myeloid leukemia cells, although autophagy can act as a “double-edged sword” contributing to cell survival or cell death. Here we evaluated the role of autophagy in thioridazine (TR)-induced cell death in the human ALL model. TR induced apoptosis in ALL Jurkat cells and it was not cytotoxic to normal peripheral mononuclear blood cells. TR promoted the activation of caspase-8 and -3, which was associated with increased NOXA/MCL-1 ratio and autophagy triggering. AMPK/PI3K/AKT/mTOR and MAPK/ERK pathways are involved in TR-induced cell death. The inhibition of the autophagic process enhanced the cytotoxicity of TR in Jurkat cells, highlighting autophagy as a targetable process for drug development purposes in ALL.


Sign in / Sign up

Export Citation Format

Share Document