On the steady state of the replicating portfolio: accounting for a growth rate

OR Spectrum ◽  
2003 ◽  
Vol 25 (3) ◽  
pp. 329-343 ◽  
Author(s):  
Jacco L. Wielhouwer
Author(s):  
J. M. Scott

The physiological rates of a normally omnivorous marine rotifer, Encentrum linnhei, were measured under the steady-state chemostat conditions in which the physiological state of the food-algae was kept constant whilst the rotifer growth rate was changed to preset levels. The specific clearance rate ranged between 50 and 100 μl/μg rotifer C/day (1.5–3.0 μ/rot/day) and varied hyperbolically with growth rate, a similar curve was obtained with the specific ingestion rate which varied between 1–2 μg C/μg rot C/day. A mean respiration rate of 0.45 μg C/μg rot C/day was obtained from oxygen consumption measurements. About 60‰ of ingested energy was found to be egested as paniculate matter and 9–4 °0 dissipated as heat, the latter comparing with a theoretical figure of 4–5‰.From rates, transfer efficiencies were obtained giving a mean net growth efficiency (K2) of 38‰ and a mean overall growth efficiency (K1 of 15‰. A curvilinear increase of Kl with growth rate contrasts with linear and hyperbolic responses found with brachionid rotifers.


Author(s):  
Marina Cvetkovska ◽  
Beth Szyszka-Mroz ◽  
Nina Malczewski ◽  
David Smith ◽  
Norman P. A. Huner

The Antarctic alga Chlamydomonas sp. UWO241 is an obligate psychrophile that thrives in the cold but is unable to survive at moderate, seemingly innocuous temperatures. We dissect the responses of UWO241 to temperature stress using global metabolomic approaches. UWO241 exhibits slow growth at 4°C, a temperature closest to its natural habitat, and faster growth at higher temperatures of 10-15°C. We demonstrate that the slower growth-rate characteristic of UWO241 at 4⁰C is not necessarily a hallmark of stress. UWO241 constitutively accumulates high levels of protective metabolites including soluble sugars, polyamines and antioxidants at a range of steady-state temperatures. In contrast, the mesophile Chlamydomonas reinhardtii accumulates these metabolites only during cold stress. Despite low growth rates, 4°C-grown UWO241 cultures had a higher capacity to respond to heat stress (24°C) and accumulated increased amounts of antioxidants, lipids and soluble sugars, when compared to cultures grown at 10-15°C. We conclude that the slower growth rate and the unique psychrophilic physiological characteristic of UWO241 grown at 4⁰C result in a permanently re-routed steady-state metabolism, which contributes to its increased resistance to heat stress. Our work adds to the growing body of research on temperature stress in psychrophiles, many of which are threatened by climate change.


CORROSION ◽  
10.5006/2896 ◽  
2020 ◽  
Vol 76 (3) ◽  
pp. 312-323
Author(s):  
Ramgopal Thodla ◽  
Feng Gui ◽  
Colum Holtam

Fatigue crack growth rate of line pipe steels in sour environments typically exhibits a steady-state value at low frequencies. However, in highly inhibited sour environments, there is no evidence of a steady-state fatigue crack growth at low frequencies. This is likely a result of static crack growth rate at Kmax. Stable static crack growth measured under constant stress intensity factor (K) conditions in inhibited sour environments was in the range of 10−7 mm/s to 10−8 mm/s. The crack growth rate in inhibited sour environments is likely associated with crack tip processes associated with metal dissolution/film formation and associated hydrogen evolution. The results obtained were modeled based on a crack tip strain rate based approach, where the rate limiting step was the metal dissolution/FeS formation and the corresponding hydrogen generation reaction.


2012 ◽  
Author(s):  
Mohd. Sahaid Hj. Kalil ◽  
Muhammad Zaki ◽  
Wan Mohtar Wan Yusoff ◽  
Mohammad Ramlan Mohd. Salleh

Penyelidikan ini bertujuan untuk menyaring substrat organik bagi untuk penghasilan sel–sel A. woodii teraruh demetilase. Pertumbuhan A. woodii dilakukan dalam medium “Balch” yang mengandungi sumber karbon berbeza dalam keadaan anaerobik. Sebanyak sebelas substrat telah diuji iaitu anisol, 2– dan 3–metoksifenol, asid vanilik, asid siringik, asid 2,3,4–, 2,4,5– dan 3,4,5–trimetoksi benzoik, 2,3,4–, 2,4,5– dan 3,4,5–trimetoksi benzil alkohol. 2–metoksifenol merupakan substrat terbaik untuk pertumbuhan A. woodii pada kadar pertumbuhan spesifik 0.14 j–1. Penghasilan sel–sel teraruh demetilase dilakukan dalam kultur kemostat pada kadar pencairan (D) 0.0j–1. Sel-sel pada keadaan mantap dituai dalam keadaan anaerobik dan dipekatkan sebelum digunakan. Pertumbuhan A. woodii didapati maksimum dengan menggunakan kepekatan 0.62 g/L 2–metoksifenol sebagai sumber karbon tunggal. Tindak balas penyahmetilan oleh sel–sel A. woodii meningkat sebanyak 78% apabila 2–metoksifenol sebanyak 0.31 g/L ditambah dalam medium yang mengandungi fruktosa (1% w/v) semasa kultur kemostat. Kata kunci: tindak balas penyahmetilan; demetilase; sel-sel tertuai; metosiaromatik, Acetobacteriumwoodii The objective of this project was to screen organic substrate suitable for the growth of A. woodii, and as for the production of demethylase. A. woodii was grown in “Balch” medium containing different carbon sources. Eleven substrates were tested including anisole, 2– and 3–methoxyphenol, vanilic acid, syringic acid, 2,3,4–, 2,4,5– and 3,4,5–trimethoxy benzoic acid and 2,3,4–, 2,4,5– and 3,4,5–trimethoxy benzyl alcohol. It was found that 2–methoxyphenol was the best substrate with a specific growth rate of 0.14 h–1. The production of demethylase induced cells was carried out in a chemostat culture at a dilution rate (D) of 0.08 h–1. Cells were harvested at steady state of growth and concentrated before use. Optimal concentration of 2–methoxvphenol as the sole carbon source was 0.62 g/L. Demethylation reaction of 0.31 g/L 2–methoxyphenol by induced culture increases 78% relative to the chemostat culture containing only fructose. Key words: Demethylation reaction; demethylase; harvested cells; methoxyaromatic; Acetobacteriumwoodii


2019 ◽  
Vol 65 (06) ◽  
pp. 1619-1644
Author(s):  
ZHIHONG JIAN ◽  
YEQING YANG

Motivated by the idea that substantive reforms in China always happen intermittently and randomly, this paper constructs an RBC model, augmented with a shock that reflects the role of reforms and its randomly occurring character, to investigate the macroeconomic effects of enhancing the reform intensity. An increase in the average intensity of reforms leads to a higher economic growth rate permanently and provides sustainable support for economy when the potential growth rate declines. But it decreases the ergodic steady state of the detrended output, and this could have an adverse effect on economic growth in the short run.


1989 ◽  
Vol 114 ◽  
pp. 507-510
Author(s):  
Mariko Kato ◽  
Hideyuki Saio ◽  
Izumi Hachisu

AbstractThe growth rate of a white dwarf which accretes hydrogen-rich or helium matter is studied. If the accretion rate is relatively small, unstable shell flash occurs and during which the envelope mass is lost. We have followed the evolutions of shell flashes by steady state approach with wind mass loss solutions to determined the mass lost from the system for wide range of binary parameters. The time-dependent models are also calculated in some cases. The mass loss due to the Roche lobe overflow are taken into account. This results seriously affects the existing scenarios on the origin of the type I supernova or on the neutron star formation induced by accretion.


2005 ◽  
Vol 16 (5) ◽  
pp. 2503-2517 ◽  
Author(s):  
Matthew J. Brauer ◽  
Alok J. Saldanha ◽  
Kara Dolinski ◽  
David Botstein

We studied the physiological response to glucose limitation in batch and steady-state (chemostat) cultures of Saccharomyces cerevisiae by following global patterns of gene expression. Glucose-limited batch cultures of yeast go through two sequential exponential growth phases, beginning with a largely fermentative phase, followed by an essentially completely aerobic use of residual glucose and evolved ethanol. Judging from the patterns of gene expression, the state of the cells growing at steady state in glucose-limited chemostats corresponds most closely with the state of cells in batch cultures just before they undergo this “diauxic shift.” Essentially the same pattern was found between chemostats having a fivefold difference in steady-state growth rate (the lower rate approximating that of the second phase respiratory growth rate in batch cultures). Although in both cases the cells in the chemostat consumed most of the glucose, in neither case did they seem to be metabolizing it primarily through respiration. Although there was some indication of a modest oxidative stress response, the chemostat cultures did not exhibit the massive environmental stress response associated with starvation that also is observed, at least in part, during the diauxic shift in batch cultures. We conclude that despite the theoretical possibility of a switch to fully aerobic metabolism of glucose in the chemostat under conditions of glucose scarcity, homeostatic mechanisms are able to carry out metabolic adjustment as if fermentation of the glucose is the preferred option until the glucose is entirely depleted. These results suggest that some aspect of actual starvation, possibly a component of the stress response, may be required for triggering the metabolic remodeling associated with the diauxic shift.


1996 ◽  
Vol 458 ◽  
Author(s):  
R. G. Muthiah ◽  
J. A. Pfaendtner ◽  
C. J. McMahon ◽  
P. Lejcek ◽  
V. Paidar

ABSTRACTIn a kinetic model [1] for the phenomenon of dynamic embrittlement, the cracking rate is predicted to be proportional to the diffusivity of the embrittling species along the grain boundary. To test this model, bicrystals of Cu-Sn and Fe-Si with Σ5 symmetrical tilt boundaries are used in which tin and sulfur, respectively, are the embrittling elements. The diffusivities parallel and perpendicular to the tilt axis are expected to be different, therefore the crack growth rates in these two directions should vary in the same ratio as the diffusivities.Preliminary measurements of crack growth rate along the [100] direction in the Cu-Sn alloy bicrystal are presented. The cracking occurred by decohesion along the grain boundary with almost no observable plasticity. The steady state crack growth was found to be approximately 10∼6 m/sec.


Sign in / Sign up

Export Citation Format

Share Document