Cell number, cell growth, antheridiogenesis, and callose amount is reduced and atrophy induced by deoxyglucose in Anemia phyllitidis gametophytes

2008 ◽  
Vol 27 (5) ◽  
pp. 813-821 ◽  
Author(s):  
Andrzej Kaźmierczak
2006 ◽  
Vol 80 (3) ◽  
pp. 1181-1190 ◽  
Author(s):  
Heather B. Nelson ◽  
Hengli Tang

ABSTRACT An intimate relationship between hepatitis C virus (HCV) replication and the physiological state of the host liver cells has been reported. In particular, a highly reproducible and reversible inhibitory effect of high cell density on HCV replication was observed: high levels of HCV RNA and protein can be detected in actively growing cells but decline sharply when the replicon cells reach confluence. Arrested cell growth of confluent cells has been proposed to be responsible for the inhibitory effect. Indeed, other means of arresting cell growth have also been shown to inhibit HCV replication. Here, we report a detailed study of the effect of cell growth and confluence on HCV replication using a flow cytometry-based assay that is not biased against cytostasis and reduced cell number. Although we readily reproduced the inhibitory effect of cell confluence on HCV replication, we found no evidence of inhibition by serum starvation, which arrested cell growth as expected. In addition, we observed no inhibitory effect by agents that perturb the cell cycle. Instead, our results suggest that the reduced intracellular pools of nucleosides account for the suppression of HCV expression in confluent cells, possibly through the shutoff of the de novo nucleoside biosynthetic pathway when cells become confluent. Adding exogenous uridine and cytidine to the culture medium restored HCV replication and expression in confluent cells. These results suggest that cell growth arrest is not sufficient for HCV replicon inhibition and reveal a mechanism for HCV RNA inhibition by cell confluence.


2001 ◽  
Vol 280 (4) ◽  
pp. F667-F674 ◽  
Author(s):  
Chhinder P. Sodhi ◽  
Sarojini A. Phadke ◽  
Daniel Batlle ◽  
Atul Sahai

The effect of hypoxia on the proliferation and collagen synthesis of cultured rat mesangial cells was examined under normal-glucose (NG, 5 mM) and high-glucose (HG, 25 mM)-media conditions. In addition, a role for osteopontin (OPN) in mediating these processes was assessed. Quiescent cultures were exposed to hypoxia (3% O2) and normoxia (18% O2) in a serum-free medium with NG or HG, and cell proliferation, collagen synthesis, and OPN expression were assessed. Cells exposed to hypoxia in NG medium resulted in significant increases in [3H]thymidine incorporation, cell number, and [3H]proline incorporation, respectively. HG incubations also produced significant stimulation of these parameters under normoxic conditions, which were markedly enhanced in cells exposed to hypoxia in HG medium. In addition, hypoxia and HG stimulated the mRNA levels of type IV collagen, and the combination of hypoxia and HG resulted in additive increases in type IV collagen expression. Hypoxia and HG also stimulated OPN mRNA and protein levels in an additive fashion. A neutralizing antibody to OPN or its β3-integrin receptor significantly blocked the effect of hypoxia and HG on proliferation and collagen synthesis. In conclusion, these results demonstrate for the first time that hypoxia in HG medium produces exaggerated mesangial cell growth and type IV collagen synthesis. In addition, OPN appears to play a role in mediating the accelerated mesangial cell growth and collagen synthesis found in a hyperglycemic and hypoxic environment.


2020 ◽  
Author(s):  
Lucía Benítez ◽  
Lucas Barberis ◽  
Luciano Vellón ◽  
Carlos Alberto Condat

Abstract Background: Cancer stem cells are important for the development of many solid tumors. These cells receive promoting and inhibitory signals that depend on the nature of their environment (their niche) and determine cell dynamics. Mechanical stresses are crucial to the initiation and interpretation of these signals. Methods: A two-population mathematical model of tumorsphere growth is used to interpret the results of a series of experiments recently carried out in Tianjin, China, and extract information about the intraspecific and interspecific interactions between cancer stem cell and differentiated cancer cell populations. Results: The model allows us to reconstruct the time evolution of the cancer stem cell fraction, which was not directly measured. We find that, in the presence of stem cell growth factors, the interspecific cooperation between cancer stem cells and differentiated cancer cells induces a positive feedback loop that determines growth, independently of substrate hardness. In a frustrated attempt to reconstitute the stem cell niche, the number of cancer stem cells increases continuously with a reproduction rate that is enhanced by a hard substrate. For growth on soft agar, intraspecific interactions are always inhibitory, but on hard agar the interactions between stem cells are collaborative while those between differentiated cells are strongly inhibitory. Evidence also suggests that a hard substrate brings about a large fraction of asymmetric stem cell divisions. In the absence of stem cell growth factors, the barrier to differentiation is broken and overall growth is faster, even if the stem cell number is conserved. Conclusions: Our interpretation of the experimental results validates the centrality of the concept of stem cell niche when tumor growth is fueled by cancer stem cells. Niche memory is found to be responsible for the characteristic population dynamics observed in tumorspheres. A specific condition for the growth of the cancer stem cell number is also obtained.


PEDIATRICS ◽  
1968 ◽  
Vol 41 (1) ◽  
pp. 30-46
Author(s):  
Donald B. Cheek

For many years the study of growth has rested mainly on the application of anthropometric techniques and the measurement of height and weight. A few years ago Tanner9 correctly pointed out that studies on body composition were mainly related to body weight and, therefore, added little to the thinking. A more penetrating approach to the study of growth was recommended.2 The present approach,11 documented in part here, has been to apply biochemical and physiological techniques for the measurement of body cell mass, cell size, cell number and, to some extent, cell function. Body function and heat production as well as maturational age have been of concern. These studies have been made in the same children at tile same time. It is anticipated that inspection of these three dimensions of growth, size, function, and maturational age should help to elucidate problems related to growth retardation. In the clinic it is possible to predict cell-extracellular mass of children by applying equations based on relationships between body composition and height and weight. We began by presenting information on growth of muscle and the differences between the sexes with the progress of time and with respect to size and number of cells. Increments in growth rate of the male at adolescence were found. Such differences in cell growth must be related to some extent to the restrictive action of estrogens on cell multiplication in the female and to the stimulating action of androgens in the male. Growth hormone is an important hormone for the multiplication of cells, while insulin is of importance to protein synthesis. Both hormones are needed for growth. Thyroid hormone appears to play a secondary role but is important to protein synthesis especially in early postnatal life. The energy requirement for normal growth is only slightly above the basal state and the visceral cell mass is the most direct standard of reference for heat production. Restriction of nutrition can either retard growth in the size of cells, in the number of cells, or both. Current studies58 show that ingestion of protein and calories incite the secretion of growth hormone and insulin in specific patterns and at appropriate times. Growth hormone has been labelled the "feasting" hormone and insulin tile "feasting" hormone.59 Thus, the subtle relationship between nutrition and cell growth becomes apparent. Of concern is the possibility that overnutrition early in life may program excess secretion of hormones such as insulin or growth hormone. Overnutrition is a major problem in the affluent society, while conservative nutrition is compatible with longevity.6 Hirsch, et al.60 informs us that growth of adipose tissue is mainly by cell number increase–as we have seen for muscle. Again, a steady state of cell number is reached for fat cells. But, obese subjects have an excess of fat cells which do not disappear with time and diet. Such cells become increasingly insensitive to insulin as they enlarge.61 One might view the passing parade of life and growth and observe the relation of the intracellular phase to body weight from infancy to senility (Fig. 12). Here we see the upward increase of cell mass with respect to time and body weight increase. The adult data are taken from F. D. Moore.62 Clearly, with senility we can suspect that more and more of the body weight is extracellular or connective tissue and less and less of the weight is soft tissue or oxidizing protoplasm. Data on body potassium are even more remarkable in this demonstration.11 It is difficult to say with Browning: Grow old along with me! The best is yet to be.... Nevertheless, it is possible that with increased information and research the understanding of these stages of cell growth will be achieved and, no doubt, the departure from the steady state of cell population which occurs at the autumn of our existence– when cancer, and cardiovascular disease supervene–will be understood.63 However, the problems of aging can only be exposed after the physiology of growth is understood.


2011 ◽  
Vol 27 (3) ◽  
pp. 337-346 ◽  
Author(s):  
T.-H. Lin ◽  
C.-H. Lin ◽  
C. A. Chung

ABSTRACTThis paper characterizes the mass transfer and replenishment of glucose and oxygen in tissue engineered cartilage constructs by a numerical approach. Cell population growth modulated by glucose and oxygen is incorporated in the mathematic model. The distribution of synthesized type II collagen and its influence on mediating the chondrocyte growth over scaffold are also investigated. Results from simulation are compared with the experiments in literature to verify the formulation and predictions. It is found that, under static culture, the oftentimes observed phenomenon that the overall cell number densities in thick scaffolds are smaller than in thin scaffolds is mainly due to depletion of glucose rather than oxygen. Cell growth is found to be more sensitive to the change in glucose concentration for thick scaffolds, whereas to be more sensitive to the change in oxygen concentration for thin scaffolds. Results also demonstrate the modulation of chondrocyte growth by type II collagen, presenting the biphasic impact of type II collagen which promotes chondrocyte growth in the initial phase of cultivation, while inhibits cell growth in the long term. The numerical model provides a useful reference for developing cartilaginous constructs in tissue engineering.


2004 ◽  
Vol 2004 (1) ◽  
pp. 35-40 ◽  
Author(s):  
Yan Wang ◽  
Hong-Li Jiao ◽  
Jin-Zhu Zhang ◽  
Rong-Qiao He

Cell growth rate and production of monoclonal antibody (MAb) of hybridoma cells producing anti-human chorionic gonadotropin (hCG) MAb have been used as investigation criteria in double-mouthed rolling bottle (DMRB). Compared with T-flask cell culture, both of the cell number and MAb production increased by approximately 42.5% when the medium was supplemented with 5% fetal calf serum (FCS) and DMRB rotated at 2 turns per minute. Yield of MAb was experimentally related to the number of viable cells. Interestingly, MAb yield was four times as high as that cultured in T-flask in the first 24 hours, and about 75% yield of total MAb was secreted by 48 hours during the culture. It appears that the promoted cell growth and MAb yield are resulted from the three-dimensional growth of hybridoma cells under a suitably revolving condition.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Thomas Matthiesen ◽  
Harald C Ott ◽  
Sak-Kia Goh ◽  
Stefan M Kren ◽  
Doris A Taylor

Background . Biocompatibility is an essential property of any extracellular matrix (ECM) used in tissue engineering. Perfusion decellularized whole cadaveric organs could provide novel scaffolds for organogenesis but their long term biocompatibility remains unknown. . Hypothesis: Perfusion decellularization of mammalian organs yields a biocompatible matrix that influences cell growth differentially in non-perfused 2-D tissue culture conditions. Methods . Adult F344 rats were euthanized after systemic heparinization. Heart, lung, liver, and kidney were removed, canulated, and perfused with SDS to remove cellular debris. Subsequent washing with 1% Triton-X-100 and PBS was performed to remove detergent. Biocompatibility was assessed by co-culture of ECM from each organ with either rat skeletal myoblasts (SKMBs) or mouse embryonic stem cells (mESCs). Decellularized tissue was cut into 0.5x1cm pieces and seeded with 40K cells each. Cells were fed daily and photographed on day 3, 9, 13, 17 (SKMB) or day 3, 5, 10, 12, 14, 20, 24 (mESC). Double-blinded high powered field (HPF) analysis was used to quantify cell growth over time. At day 17 or 24 tissues were harvested for histological analysis and TUNEL assays to assess cell number and viability. Results . Cell viability was >90% in all cases but showed no organ preference. heart + SKMB 90.2 ± 2.4 and mESC 98.3 ± 1.1; lung + SKMB 96.3 ± 1.9 and mESC 96.4 ± 1.0; liver + SKMB 90.3 ± 3.2 and mESC 97.7 ± 1.6; kidney + SKMB 89.5 ± 4.5 and mESC 98.1 ± 1.4 Cell number on the other hand increased in all ECM coculture conditions (Table 1 ;) but with two distinct patterns depending on the organ. Maximal cell density was observed in Kidney followed by Liver, Lung and Heart (Table 1 ). Conclusion. SDS-based perfusion decellularization of cadaveric heart, lung, liver, and kidney provides biocompatible scaffolds that are conducive to cell growth and viability. Kidney and liver scaffolds allowed for greatest cell proliferation over time.


1988 ◽  
Vol 90 (2) ◽  
pp. 265-273 ◽  
Author(s):  
M. Yoneda ◽  
M. Yamagata ◽  
S. Suzuki ◽  
K. Kimata

When the concentration of hyaluronic acid was monitored in primary cultures of mouse skin dermal fibroblasts, there was an increase in hyaluronic acid proportional to the increase in cell number during the logarithmic growth phase. The concentration reached the maximum value 2 days before the cells became confluent, and then decreased gradually. Hyaluronic acid added at 1 mg ml-1 during the logarithmic phase either promoted or inhibited cell growth, depending on the density of cells at the time when hyaluronic acid was added. Hyaluronic acid (1 mg ml-1) added to subconfluent or postconfluent cultures induced a transient DNA synthesis with a consequent increase (greater than 20%) in cell number. The effects appeared to be specific, since neither hyaluronic acid oligosaccharides nor some other types of glycosaminoglycan (chondroitin, chondroitin sulphates, heparan sulphates and heparin) had any similar effects. Dibutyryl adenosine 3′,5′-cyclic monophosphate (dbcAMP), at 1 mM, added to subconfluent or postconfluent cultures had promoting effects successively on hyaluronic acid synthesis and on cell growth. An increase in hyaluronic acid synthesis also occurred when dbcAMP was added to day 1 cultures in the logarithmic growth phase, but the effect on cell growth was reversed; there was an inhibition rather than a promotion. The pattern of cell density-dependent variation of the dbcAMP effect is quite similar to that observed with exogenously added hyaluronic acid. Therefore, we propose that hyaluronic acid added exogenously or supplied endogenously by increased synthesis may act as a modulator of mouse dermal fibroblast proliferation.


2013 ◽  
Vol 20 (3) ◽  
pp. 443-454 ◽  
Author(s):  
Peter M van Koetsveld ◽  
Giovanni Vitale ◽  
Richard A Feelders ◽  
Marlijn Waaijers ◽  
Diana M Sprij-Mooij ◽  
...  

Adrenocortical carcinoma (ACC) is an aggressive tumor with very poor prognosis. Novel medical treatment opportunities are required. We investigated the effects of interferon-β (IFN-β), alone or in combination with mitotane, on cell growth and cortisol secretion in primary cultures of 13 human ACCs, three adrenal hyperplasias, three adrenal adenomas, and in two ACC cell lines. Moreover, the interrelationship between the effects of IGF2 and IFN-β was evaluated. Mitotane inhibited cell total DNA content/well (representing cell number) in 7/11 (IC50: 38±9.2 μM) and cortisol secretion in 5/5 ACC cultures (IC50: 4.5±0.1 μM). IFN-β reduced cell number in 10/11 (IC50: 83±18 IU/ml) and cortisol secretion in 5/5 ACC cultures (IC50: 7.3±1.5 IU/ml). The effect of IFN-β on cell number included the induction of apoptosis. IFN-β strongly inhibited mRNA expression of STAR, CYP11A1, CYP17A1, and CYP11B1. Mitotane and IFN-β induced an additive inhibitory effect on cell number and cortisol secretion. IGF2 (10 nM) inhibited apoptosis and increased cell number and cortisol secretion. These effects were counteracted by IFN-β treatment. Finally, IFN-β inhibited IGF2 secretion and mRNA expression. In conclusion, IFN-β is a potent inhibitor of ACC cell growth in human primary ACC cultures, partially mediated by an inhibition of the effects of IGF2, as well as its production. The increased sensitivity of ACC cells to mitotane induced by treatment with IFN-β may open the opportunity for combined treatment regimens with lower mitotane doses. The inhibition of the expression of steroidogenic enzymes by IFN-β is a novel mechanism that may explain its inhibitory effect on cortisol production.


2002 ◽  
Vol 227 (4) ◽  
pp. 260-265 ◽  
Author(s):  
Ernest B. Izevbigie ◽  
Stephen I. Ekunwe ◽  
Jenny Jordan ◽  
Carolyn B. Howard

The role of ethanol or its metabolites on breast neoplasm has not been characterized. We hypothesized that ethanol may alter the growth rate of human breast tumor epithelial cells by modulating putative growth-promoting signaling pathways such as p44/42 mitogen-activated protein kinases (MAPKs). The MCF-7 cell line, considered a suitable model, was used in these studies to investigate the effects of ethanol on [3H]thymidine incorporation, cell number, and p44/42 MAPK activities in the presence or absence of a MAPK or extracellular signal-regulated kinase ERK-1, and (MEK1) inhibitor (PD098059). Treatment of MCF-7 cells with a physiologically relevant concentration of ethanol (0.3% or 65 mM) increased p44/42 activities by an average of 400% (P < 0.02), and subsequent cell growth by 200% (P < 0.05) in a MEK1 inhibitor (PD098059)-sensitive fashion, thus suggesting that the Ras/MEK/MAPK signaling pathways are crucial for ethanol-induced MCF-7 cell growth.


Sign in / Sign up

Export Citation Format

Share Document