Evaluating the impact of spatio-temporal scale on CPUE standardization

2013 ◽  
Vol 31 (5) ◽  
pp. 935-948 ◽  
Author(s):  
Siquan Tian ◽  
Chan Han ◽  
Yong Chen ◽  
Xinjun Chen
Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 307
Author(s):  
Chi Zhang ◽  
Naixia Mou ◽  
Jiqiang Niu ◽  
Lingxian Zhang ◽  
Feng Liu

Changes in snow cover over the Tibetan Plateau (TP) have a significant impact on agriculture, hydrology, and ecological environment of surrounding areas. This study investigates the spatio-temporal pattern of snow depth (SD) and snow cover days (SCD), as well as the impact of temperature and precipitation on snow cover over TP from 1979 to 2018 by using the ERA5 reanalysis dataset, and uses the Mann–Kendall test for significance. The results indicate that (1) the average annual SD and SCD in the southern and western edge areas of TP are relatively high, reaching 10 cm and 120 d or more, respectively. (2) In the past 40 years, SD (s = 0.04 cm decade−1, p = 0.81) and SCD (s = −2.3 d decade−1, p = 0.10) over TP did not change significantly. (3) The positive feedback effect of precipitation is the main factor affecting SD, while the negative feedback effect of temperature is the main factor affecting SCD. This study improves the understanding of snow cover change and is conducive to the further study of climate change on TP.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1432
Author(s):  
Xwégnon Ghislain Agoua ◽  
Robin Girard ◽  
Georges Kariniotakis

The efficient integration of photovoltaic (PV) production in energy systems is conditioned by the capacity to anticipate its variability, that is, the capacity to provide accurate forecasts. From the classical forecasting methods in the state of the art dealing with a single power plant, the focus has moved in recent years to spatio-temporal approaches, where geographically dispersed data are used as input to improve forecasts of a site for the horizons up to 6 h ahead. These spatio-temporal approaches provide different performances according to the data sources available but the question of the impact of each source on the actual forecasting performance is still not evaluated. In this paper, we propose a flexible spatio-temporal model to generate PV production forecasts for horizons up to 6 h ahead and we use this model to evaluate the effect of different spatial and temporal data sources on the accuracy of the forecasts. The sources considered are measurements from neighboring PV plants, local meteorological stations, Numerical Weather Predictions, and satellite images. The evaluation of the performance is carried out using a real-world test case featuring a high number of 136 PV plants. The forecasting error has been evaluated for each data source using the Mean Absolute Error and Root Mean Square Error. The results show that neighboring PV plants help to achieve around 10% reduction in forecasting error for the first three hours, followed by satellite images which help to gain an additional 3% all over the horizons up to 6 h ahead. The NWP data show no improvement for horizons up to 6 h but is essential for greater horizons.


2017 ◽  
Vol 12 (1) ◽  
Author(s):  
Elias Nyandwi ◽  
Tom Veldkamp ◽  
Frank Badu Osei ◽  
Sherif Amer

Schistosomiasis is recognised as a major public health problem in Rwanda. We aimed to identify the spatio-temporal dynamics of its distribution at a fine-scale spatial resolution and to explore the impact of control programme interventions. Incidence data of Schistosoma mansoni infection at 367 health facilities were obtained for the period 2001-2012. Disease cluster analyses were conducted using spatial scan statistics and geographic information systems. The impact of control interventions was assessed for three distinct sub-periods. Findings demonstrated persisting, emerging and re-emerging clusters of schistosomiasis infection across space and time. The control programme initially caused an abrupt increase in incidence rates during its implementation phase. However, this was followed by declining and disappearing clusters when the programme was fully in place. The findings presented should contribute to a better understanding of the dynamics of schistosomiasis distribution to be used when implementing future control activities, including prevention and elimination efforts.


Water Policy ◽  
2016 ◽  
Vol 19 (1) ◽  
pp. 181-195 ◽  
Author(s):  
Huiqing Han ◽  
Yuxiang Dong

Water supply is an important freshwater ecosystem service provided by ecosystems. Water shortages resulting from spatio-temporal heterogeneity of climate condition or human activities present serious problems in the Guizhou Province of southwest China. This study aimed to analyze the spatio-temporal changes of water supply service using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, explore how climate and land-use changes impact water supply provision, and discuss the impact of parameters associated with climate and land-use in the InVEST model on water supply in the region. We used data and the model to forecast trends for the year 2030 and found that water supply has been declining in the region at the watershed scale since 1990. Climate and land-use change played important roles in affecting the water supply. Water supply was overwhelmingly driven by the reference evapotranspiration and annual average precipitation, while the plant evapotranspiration coefficients for each land-use type had a relatively small effect. The method for sensitivity analysis developed in this study allowed exploration of the relative importance of parameters in the InVEST water yield model. The Grain-for-Green project, afforestation, and urban expansion control should be accelerated in this region to protect the water supply.


2020 ◽  
Vol 5 (3) ◽  
pp. 977-981 ◽  
Author(s):  
Anna-Maria Tilg ◽  
Charlotte Bay Hasager ◽  
Hans-Jürgen Kirtzel ◽  
Poul Hummelshøj

Abstract. Leading-edge erosion (LEE) of wind turbine blades is caused by the impact of hydrometeors, which appear in a solid or liquid phase. A reduction in the wind turbine blades' tip speed during defined precipitation events can mitigate LEE. To apply such an erosion-safe mode, a precipitation nowcast is required. Theoretical considerations indicate that the time a raindrop needs to fall to the ground is sufficient to reduce the tip speed. Furthermore, it is described that a compact, vertically pointing radar that measures rain at different heights with a sufficiently high spatio-temporal resolution can nowcast rain for an erosion-safe mode.


2012 ◽  
Vol 279 (1745) ◽  
pp. 4206-4214 ◽  
Author(s):  
M. Maas ◽  
D. F. Keet ◽  
V. P. M. G. Rutten ◽  
J. A. P. Heesterbeek ◽  
M. Nielen

Bovine tuberculosis (BTB), caused by Mycobacterium bovis , is a disease that was introduced relatively recently into the Kruger National Park (KNP) lion population. Feline immunodeficiency virus (FIV ple ) is thought to have been endemic in lions for a much longer time. In humans, co-infection between Mycobacterium tuberculosis and human immunodeficiency virus increases disease burden. If BTB were to reach high levels of prevalence in lions, and if similar worsening effects would exist between FIV ple and BTB as for their human equivalents, this could pose a lion conservation problem. We collected data on lions in KNP from 1993 to 2008 for spatio-temporal analysis of both FIV ple and BTB, and to assess whether a similar relationship between the two diseases exists in lions. We found that BTB prevalence in the south was higher than in the north (72 versus 19% over the total study period) and increased over time in the northern part of the KNP (0–41%). No significant spatio-temporal differences were seen for FIV ple in the study period, in agreement with the presumed endemic state of the infection. Both infections affected haematology and blood chemistry values, FIV ple in a more pronounced way than BTB. The effect of co-infection on these values, however, was always less than additive. Though a large proportion (31%) of the lions was co-infected with FIV ple and M. bovis , there was no evidence for a synergistic relation as in their human counterparts. Whether this results from different immunopathogeneses remains to be determined.


Author(s):  
Ioannis T. Georgiou

Geometry consistent spatio-temporal measurements of the experimental acceleration of olive tree branches were analyzed with advanced POD tools in an effort to gain knowledge on the mechanics-dynamics of this bio-mechanical structure. To pave the way for understanding the dynamics of this system, both the typical olive tree as a whole and its typical branch are approached as interacting soft-stiff continuum mechanical systems. The POD analysis reveals that the impact response is a nonlinear vibration with very fast dissipation. The POD modal amplitudes are nonlinear vibrations of continuous, broadband frequency spectrum. Initially they exhibit regular phases of nonlinear slow dissipation-and-amplification followed by irregular, fast dissipation-and-amplification phases. Sequentially applied impacts at the branch soft area results in a complete detachment of the fruit. The POD analysis reveals that this occurs because the response is highly localized in the soft area where the impact is applied and thus it transfers its momentum to the fruits. The work is supplemented with analysis of field measurements of the acceleration dynamics of orchard olive tree branches excited by harvesting devices generating combing clouds of impulsive forces aimed at detaching the olive fruit by momentum transfer.


2020 ◽  
Vol 64 (4) ◽  
pp. R45-R56 ◽  
Author(s):  
Andrea Hanel ◽  
Henna-Riikka Malmberg ◽  
Carsten Carlberg

Molecular endocrinology of vitamin D is based on the activation of the transcription factor vitamin D receptor (VDR) by the vitamin D metabolite 1α,25-dihydroxyvitamin D3. This nuclear vitamin D-sensing process causes epigenome-wide effects, such as changes in chromatin accessibility as well as in the contact of VDR and its supporting pioneer factors with thousands of genomic binding sites, referred to as vitamin D response elements. VDR binding enhancer regions loop to transcription start sites of hundreds of vitamin D target genes resulting in changes of their expression. Thus, vitamin D signaling is based on epigenome- and transcriptome-wide shifts in VDR-expressing tissues. Monocytes are the most responsive cell type of the immune system and serve as a paradigm for uncovering the chromatin model of vitamin D signaling. In this review, an alternative approach for selecting vitamin D target genes is presented, which are most relevant for understanding the impact of vitamin D endocrinology on innate immunity. Different scenarios of the regulation of primary upregulated vitamin D target genes are presented, in which vitamin D-driven super-enhancers comprise a cluster of persistent (constant) and/or inducible (transient) VDR-binding sites. In conclusion, the spatio-temporal VDR binding in the context of chromatin is most critical for the regulation of vitamin D target genes.


Sign in / Sign up

Export Citation Format

Share Document