Effects of imperfect spatial resolution on turbulence measurements in the very near-wall viscous sublayer region

1997 ◽  
Vol 22 (4) ◽  
pp. 327-335 ◽  
Author(s):  
B. C. Khoo ◽  
Y. T. Chew ◽  
G. L. Li
Author(s):  
Jeffrey D. Ferguson ◽  
Dibbon K. Walters ◽  
James H. Leylek

For the first time in the open literature, code validation quality data and a well-tested, highly reliable computational methodology are employed to isolate the true performance of seven turbulence treatments in discrete jet film cooling. The present research examines both computational and high quality experimental data for two length-to-diameter ratios of a row of streamwise injected, cylindrical film holes. These two cases are used to document the performance of the following turbulence treatments: 1) standard k-ε model with generalized wall functions; 2) standard k-ε model with non-equilibrium wall functions: 3) Renormalization Group k-ε (RNG) model with generalized wall functions; 4) RNG model with non-equilibrium wall functions: 51 standard k-ε model with two-layer turbulence wall treatment; 6) Reynolds Stress Model (RSM) with generalized wall functions; and 7) RSM with non-equilibrium wall functions. Overall, the standard k-ε turbulence model with the two-layer near-wall treatment, which resolves the viscous sublayer, produces results that are more consistent with experimental data.


2010 ◽  
Vol 659 ◽  
pp. 405-419 ◽  
Author(s):  
K. YEO ◽  
B.-G. KIM ◽  
C. LEE

The behaviour of fluid-particle acceleration in near-wall turbulent flows is investigated in numerically simulated turbulent channel flows at low to moderate Reynolds numbers, Reτ = 180~600). The acceleration is decomposed into pressure-gradient (irrotational) and viscous contributions (solenoidal acceleration) and the statistics of each component are analysed. In near-wall turbulent flows, the probability density function of acceleration is strongly dependent on the distance from the wall. Unexpectedly, the intermittency of acceleration is strongest in the viscous sublayer, where the acceleration flatness factor of O(100) is observed. It is shown that the centripetal acceleration around coherent vortical structures is an important source of the acceleration intermittency. We found sheet-like structures of strong solenoidal accelerations near the wall, which are associated with the background shear modified by the interaction between a streamwise vortex and the wall. We found that the acceleration Kolmogorov constant is a linear function of y+ in the log layer. The Reynolds number dependence of the acceleration statistics is investigated.


Author(s):  
Adam H. Richards ◽  
Robert E. Spall

A two-equation k-ω model is used to model a strongly heated, low-Mach number gas flowing upward in a vertical tube. Heating causes significant property variation and thickening of the viscous sublayer, consequently a fully developed flow does not evolve. Two-equation turbulence models generally perform poorly under such conditions. Consequently, in the present work, a near-wall two-equation heat transfer model is utilized in conjunction with the k-ω model to improve heat transfer predictions.


Author(s):  
Dongmei Zhou ◽  
Kenneth S. Ball

This paper has two objectives, (1) to examine the effects of spatial resolution, (2) to examine the effects of computational box size, upon turbulence statistics and the amount of drag reduction with and without the control scheme of wall oscillation. Direct numerical simulation (DNS) of the fully developed turbulent channel flow was performed at Reynolds number of 200 based on the wall-shear velocity and the channel half-width by using spectral methods. For the first objective, four different grids were applied to the same computational domain and the biggest impact was observed on the logarithmic law of mean velocity profiles and on the amount of drag reduction with 28.3% for the coarsest mesh and 35.4% for the finest mesh. Other turbulence features such as RMS velocity fluctuations, RMS vorticity fluctuations, and bursting events were either overpredicted or underpredicted through coarse grids. For the second objective, two different minimal channels and one natural full channel were studied and 3% drag reduction difference was observed between the smallest minimal channel of 39.1% and the natural full channel of 36.2%. In the near-wall region, however, the minimal channel flow did not exhibit significant difference in the mean velocity profiles and other lower-order statistics. Finally, from this systematical study, it showed that the accuracy of DNS depends more on the spanwise resolution, and it also confirmed that a minimal channel model is able to catch key structures of turbulence in the near-wall region but is much less expensive.


1982 ◽  
Vol 119 ◽  
pp. 423-441 ◽  
Author(s):  
M. A. Goldshtik ◽  
V. V. Zametalin ◽  
V. N. Shtern

We propose a simplified theory of a viscous layer in near-wall turbulent flow that determines the mean-velocity profile and integral characteristics of velocity fluctuations. The theory is based on the concepts resulting from the experimental data implying a relatively simple almost-ordered structure of fluctuations in close proximity to the wall. On the basis of data on the greatest contribution to transfer processes made by the part of the spectrum associated with the main size of the observed structures, the turbulent fluctuations are simulated by a three-dimensional running wave whose parameters are found from the problem solution. Mathematically the problem reduces to the solution of linearized Navier-Stokes equations. The no-slip condition is satisfied on the wall, whereas on the outer boundary of a viscous layer the conditions of smooth conjunction with the asymptotic shape of velocity and fluctuation-energy profiles resulting from the dimensional analysis are satisfied. The formulation of the problem is completed by the requirement of maximum curvature of the mean-velocity profile on the outer boundary applied from stability considerations.The solution of the problem does not require any quantitative empirical data, although the conditions of conjunction were formulated according to the well-known concepts obtained experimentally. As a result, the near-wall law for the averaged velocity has been calculated theoretically and is in good agreement with experiment, and the characteristic scales for fluctuations have also been determined. The developed theory is applied to turbulent-flow calculations in Maxwell and Oldroyd media. The elastic properties of fluids are shown to lead to near-wall region reconstruction and its associated drag reduction, as is the case in turbulent flows of dilute polymer solutions. This theory accounts for several features typical of the Toms effect, such as the threshold character of the effect and the decrease in the normal fluctuating velocity. The analysis of the near-wall Oldroyd fluid flow permits us to elucidate several new aspects of the drag-reduction effect. It has been established that the Toms effect does not always result in thickening of the viscous sublayer; on the contrary, the most intense drag reduction takes place without thickening in the viscous sublayer.


2009 ◽  
Vol 635 ◽  
pp. 103-136 ◽  
Author(s):  
N. HUTCHINS ◽  
T. B. NICKELS ◽  
I. MARUSIC ◽  
M. S. CHONG

Careful reassessment of new and pre-existing data shows that recorded scatter in the hot-wire-measured near-wall peak in viscous-scaled streamwise turbulence intensity is due in large part to the simultaneous competing effects of the Reynolds number and viscous-scaled wire length l+. An empirical expression is given to account for these effects. These competing factors can explain much of the disparity in existing literature, in particular explaining how previous studies have incorrectly concluded that the inner-scaled near-wall peak is independent of the Reynolds number. We also investigate the appearance of the so-called outer peak in the broadband streamwise intensity, found by some researchers to occur within the log region of high-Reynolds-number boundary layers. We show that the ‘outer peak’ is consistent with the attenuation of small scales due to large l+. For turbulent boundary layers, in the absence of spatial resolution problems, there is no outer peak up to the Reynolds numbers investigated here (Reτ = 18830). Beyond these Reynolds numbers – and for internal geometries – the existence of such peaks remains open to debate. Fully mapped energy spectra, obtained with a range of l+, are used to demonstrate this phenomenon. We also establish the basis for a ‘maximum flow frequency’, a minimum time scale that the full experimental system must be capable of resolving, in order to ensure that the energetic scales are not attenuated. It is shown that where this criterion is not met (in this instance due to insufficient anemometer/probe response), an outer peak can be reproduced in the streamwise intensity even in the absence of spatial resolution problems. It is also shown that attenuation due to wire length can erode the region of the streamwise energy spectra in which we would normally expect to see kx−1 scaling. In doing so, we are able to rationalize much of the disparity in pre-existing literature over the kx−1 region of self-similarity. Not surprisingly, the attenuated spectra also indicate that Kolmogorov-scaled spectra are subject to substantial errors due to wire spatial resolution issues. These errors persist to wavelengths far beyond those which we might otherwise assume from simple isotropic assumptions of small-scale motions. The effects of hot-wire length-to-diameter ratio (l/d) are also briefly investigated. For the moderate wire Reynolds numbers investigated here, reducing l/d from 200 to 100 has a detrimental effect on measured turbulent fluctuations at a wide range of energetic scales, affecting both the broadband intensity and the energy spectra.


2012 ◽  
Vol 693 ◽  
pp. 150-200 ◽  
Author(s):  
Emile Touber ◽  
Michael A. Leschziner

AbstractDirect numerical simulations for fully developed channel flow, subjected to oscillatory spanwise wall motion, have been performed and analysed in an effort to illuminate the fundamental mechanisms responsible for the reduction in turbulent friction drag, observed to result from the spanwise wall motion. A range of statistical data are discussed, including second-moment budgets, joint-probability-density functions, enstrophy and energy-spectra maps. Structural features are also investigated by reference to the response of streak properties to the oscillatory forcing. The unsteady cross-flow straining is shown to cause major spanwise distortions in the streak near-wall structures, leading to a pronounced reduction in the wall-normal momentum exchange in the viscous sublayer, hence disrupting the turbulence contribution to the wall shear stress. The response of the streaks, in terms of their periodic reorientation in wall-parallel planes, the decline and recovery of their intensity during the cyclic actuation, and their wall-normal coherence, is shown to be closely correlated with the temporal variation of the shear-strain vector. Furthermore, a modulating ‘top-to-bottom’ effect, associated with large-scale outer-layer structures, is highlighted and deemed responsible for the observed reduction in the actuation efficiency as the Reynolds number is increased.


Sign in / Sign up

Export Citation Format

Share Document