scholarly journals Synergism between feremycorrhizal symbiosis and free-living diazotrophs leads to improved growth and nutrition of wheat under nitrogen deficiency conditions

Author(s):  
Khalil Kariman ◽  
Benjamin Moreira-Grez ◽  
Craig Scanlan ◽  
Saleh Rahimlou ◽  
Gustavo Boitt ◽  
...  

AbstractA controlled-environment study was conducted to explore possible synergistic interactions between the feremycorrhizal (FM) fungus Austroboletus occidentalis and soil free-living N2-fixing bacteria (diazotrophs). Wheat (Triticum aestivum) plants were grown under N deficiency conditions in a field soil without adding microbial inoculum (control: only containing soil indigenous microbes), or inoculated with a consortium containing four free-living diazotroph isolates (diazotrophs treatment), A. occidentalis inoculum (FM treatment), or both diazotrophs and A. occidentalis inoculums (dual treatment). After 7 weeks of growth, significantly greater shoot biomass was observed in plants inoculated with diazotrophs (by 25%), A. occidentalis (by 101%), and combined inoculums (by 106%), compared to the non-inoculated control treatment. All inoculated plants also had higher shoot nutrient contents (including N, P, K, Mg, Zn, Cu, and Mn) than the control treatment. Compared to the control and diazotrophs treatments, significantly greater shoot N content was observed in the FM treatment (i.e., synergism between the FM fungus and soil indigenous diazotrophs). Dually inoculated plants had the highest content of nutrients in shoots (e.g., N, P, K, S, Mg, Zn, Cu, and Mn) and soil total N (13–24% higher than the other treatments), i.e., synergism between the FM fungus and added diazotrophs. Root colonization by soil indigenous arbuscular mycorrhizal fungi declined in all inoculated plants compared to control. Non-metric multidimensional scaling (NMDS) analysis of the bacterial 16S rRNA gene amplicons revealed that the FM fungus modified the soil microbiome. Our in vitro study indicated that A. occidentalis could not grow on substrates containing lignocellulosic materials or sucrose, but grew on media supplemented with hexoses such as glucose and fructose, indicating that the FM fungus has limited saprotrophic capacity similar to ectomycorrhizal fungi. The results revealed synergistic interactions between A. occidentalis and soil free-living diazotrophs, indicating a potential to boost microbial N2 fixation for non-legume crops.

2010 ◽  
Vol 76 (21) ◽  
pp. 7144-7153 ◽  
Author(s):  
Rinske M. Valster ◽  
Bart A. Wullings ◽  
Dick van der Kooij

ABSTRACT Legionella pneumophila proliferates in aquatic habitats within free-living protozoa, 17 species of which have been identified as hosts by using in vitro experiments. The present study aimed at identifying protozoan hosts for L. pneumophila by using a biofilm batch test (BBT). Samples (600 ml) collected from 21 engineered freshwater systems, with added polyethylene cylinders to promote biofilm formation, were inoculated with L. pneumophila and subsequently incubated at 37°C for 20 days. Growth of L. pneumophila was observed in 16 of 18 water types when the host protozoan Hartmannella vermiformis was added. Twelve of the tested water types supported growth of L. pneumophila or indigenous Legionella anisa without added H. vermiformis. In 12 of 19 BBT flasks H. vermiformis was indicated as a host, based on the ratio between maximum concentrations of L. pneumophila and H. vermiformis, determined with quantitative PCR (Q-PCR), and the composition of clone libraries of partial 18S rRNA gene fragments. Analyses of 609 eukaryotic clones from the BBTs revealed that 68 operational taxonomic units (OTUs) showed the highest similarity to free-living protozoa. Forty percent of the sequences clustering with protozoa showed ≥99.5% similarity to H. vermiformis. None of the other protozoa serving as hosts in in vitro studies were detected in the BBTs. In several tests with growth of L. pneumophila, the protozoa Diphylleia rotans, Echinamoeba thermarum, and Neoparamoeba sp. were identified as candidate hosts. In vitro studies are needed to confirm their role as hosts for L. pneumophila. Unidentified protozoa were implicated as hosts for uncultured Legionella spp. grown in BBT flasks at 15°C.


1999 ◽  
Vol 79 (2) ◽  
pp. 223-229 ◽  
Author(s):  
G. Bélanger ◽  
R. E. McQueen

Nitrogen fertilization is known to have a limited effect on the digestibility of grasses. In a previous paper, however, we reported that N deficiency increased the proportion of leaves in the shoot biomass, and hence, indirectly increased the digestibility of timothy (Phleum pratense L). This was mitigated by the direct negative effect of N deficiency on the digestibility of leaves or stems or both early in the regrowth. The objective of this study was to determine the direct effect of N deficiency on three parameters of nutritive value of leaves and stems of timothy cv. Champ. The evolution of leaf and stem in vitro true digestibility (IVTD), in vitro cell wall digestibility (IVCWD), and neutral detergent fiber (NDF) concentration of field-grown timothy fertilized with four rates of N was studied during a spring and summer regrowth cycle by sampling at weekly intervals. The rate of decline in leaf nutritive value in spring was greater than that in summer, and was less than the rate of decline in stem nutritive value during spring. Nitrogen deficiency consistently increased the NDF concentration of leaves but had a lesser effect on the NDF concentration of stems. Nitrogen deficiency decreased leaf IVCWD when the leaf-to-weight ratio (LWR) was high early in the spring and summer regrowth cycles. At the end of regrowth when LWR values were low, leaf IVCWD was greatest when no N was applied. As a result, the negative effect of N deficiency on the leaf IVTD during the early part of the spring and summer regrowth cycles diminished as the regrowth cycles progressed. Nitrogen deficiency had a limited effect on stem IVCWD. We concluded that the direct negative effect of N deficiency on the digestibility of the timothy shoot biomass can be attributed primarily to its effect on the NDF concentration and cell wall digestibility of leaves. Key words: Phleum pratense L., grasses, digestibility, cell wall, nitrogen


1998 ◽  
Vol 64 (5) ◽  
pp. 1688-1693 ◽  
Author(s):  
Anthony L. Newsome ◽  
Tammy M. Scott ◽  
Robert F. Benson ◽  
Barry S. Fields

ABSTRACT There are numerous in vitro studies documenting the multiplication of Legionella species in free-living amoebae and other protozoa. It is believed that protozoa serve as host cells for the intracellular replication of certain Legionella species in a variety of environmental settings. This study describes the isolation and characterization of a bacterium initially observed within an amoeba taken from a soil sample. In the laboratory, the bacterium multiplied within and was highly pathogenic for Acanthamoeba polyphaga. Extracellular multiplication was observed on buffered charcoal yeast extract agar but not on a variety of conventional laboratory media. A 16S rRNA gene analysis placed the bacterium within the genus Legionella. Serological studies indicate that it is distinct from previously described species of the genus. This report also describes methods that should prove useful for the isolation and characterization of additional Legionella-like bacteria from free-living amoebae. In addition, the characterization of bacterial pathogens of amoebae has significant implications for understanding the ecology and identification of other unrecognized bacterial pathogens.


2020 ◽  
Vol 13 (2) ◽  
pp. 54-65 ◽  
Author(s):  
M.E.A. Bendaha ◽  
H.A. Belaouni

SummaryThis study aims to develop a biocontrol agent against Fusarium oxysporum f.sp. radicis-lycopersici (FORL) in tomato. For this, a set of 23 bacterial endophytic isolates has been screened for their ability to inhibit in vitro the growth of FORL using the dual plate assay. Three isolates with the most sound antagonistic activity to FORL have been qualitatively screened for siderophore production, phosphates solubilization and indolic acetic acid (IAA) synthesis as growth promotion traits. Antagonistic values of the three candidates against FORL were respectively: 51.51 % (EB4B), 51.18 % (EB22K) and 41.40 % (EB2A). Based on 16S rRNA gene sequence analysis, the isolates EB4B and EB22K were closely related to Enterobacter ludwigii EN-119, while the strain EB2A has been assigned to Leclercia adecarboxylata NBRC 102595. The promotion of tomato growth has been assessed in vitro using the strains EB2A, EB4B and EB22K in presence of the phytopathogen FORL. The treatments with the selected isolates increased significantly the root length and dry weight. Best results were observed in isolate EB4B in terms of growth promotion in the absence of FORL, improving 326.60 % of the root length and 142.70 % of plant dry weight if compared with untreated controls. In the presence of FORL, the strain EB4B improved both root length (180.81 %) and plant dry weight (202.15 %). These results encourage further characterization of the observed beneficial effect of Enterobacter sp. EB4B for a possible use as biofertilizer and biocontrol agent against FORL.


Growth regulators, phytohormones, both natural and artificial, are the main means to control plant ontogenesis. They are involved in regulating the processes of cell differentiation and cell divisions, the formation of tissues and organs, the changes in the rate of growth and development, the duration of the certain stages of ontogenesis. The main classes of phytohormones used in plant biotechnology, in particular, in the induction of haploid structures, are auxins and cytokinins. The mechanism of action of phytohormones on a cell is rather complicated and may have a different character. Understanding the characteristics of the action of phytohormones is complicated by the fact that the system of hormonal regulation of plant life is multicomponent. This is manifested in the fact that the same physiological process is most often influenced not by one, but by several phytohormones, covering a wide range of aspects of cell metabolism. In connection with the foregoing, the purpose of our work was to test a set of nutrient media with different basic composition and different proportions of phytohormones to determine the patterns of their influence on the processes of haploid structure induction in rape anther culture using accessions, developed at the Institute of Oilseed Crops NAAS. The material used was two accessions of winter rapeseed (No. 1 and No. 2) and one sample of spring rapeseed, provided by the Rapeseed Breeding laboratory of the Institute of Oilseed Crops. Incised inflorescences were kept against the background of low temperature of 6–8 ° C for several days, and then, under aseptic conditions, anthers with unripe pollen grains were isolated and planted on nutrient media differing in both basic mineral composition and content of phytohormones. MS (Murashige & Skoog 1962) and B5 (Gamborg et al 1968) media were used as basic media. Phytohormones were added to the basic media in various combinations – BA, 2,4-D, NAA at the concentrations of 0.1-0.6 mg/l. In each treatment up to 300 anthers were cultivated. Differences between treatments were evaluated using standard t-test. Studies have shown that in the anther culture of rapeseed on the tested nutrient media, morphogenic structures of different types (embryoids and callus) were originated. Synthetic auxin 2,4-D, regardless of the composition of the basic medium, caused the formation of structures of both types, though with a low frequency. Phytohormone BA of the cytokinin type had a similar effect. In this case, the frequency of structures was slightly higher, and the developed structures were represented mainly by embryoids. The joint action of cytokinin and auxin was the most favorable for the initiation of morphogenic structures. Such combination of phytohormones caused the formation of these structures with a frequency of 24.5-14.7% in the studied genotypes of winter rape. A similar effect of phytohormones on the induction and development of morphogenic structures was also observed in spring rape. In this case, a single basic MS medium was used. The experiment included treatments where phytohormones were absent (control), as well as various combinations of auxin and cytokinin. In the control treatment, the formation of new structures was not noted. In treatments with phytohormones, in addition to the medium with the combination of auxin and cytokinin, the medium in which only cytokinin was present was also rather effective. The treatment in which the action of auxin 2,4-D was combined with the action of another auxin, NAA, turned out to be practically ineffective. Thus, it was found that for the induction of morphogenic structures from microspores in rape anther culture of the tested genotypes, the combination of cytokinin with auxin, or the use of only single cytokinin BA without other phytohormones, had the most positive effect.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Musa Saheed Ibrahim ◽  
Beckley Ikhajiagbe

Abstract Background Rice forms a significant portion of food consumed in most household worldwide. Rice production has been hampered by soil factors such as ferruginousity which has limited phosphorus availability; an important mineral component for the growth and yield of rice. The presence of phosphate-solubilizing bacteria (PSB) in soils has been reported to enhance phosphate availability. In view of this, the present study employed three bacteria species (BCAC2, EMBF2 and BCAF1) that were previously isolated and proved P solubilization capacities as inocula to investigate the growth response of rice germinants in an in vitro setup. The bacteria isolates were first identified using 16S rRNA gene sequencing and then applied as inoculum. The inolula were prepared in three concentrations (10, 7.5 and 5.0 ml) following McFarland standard. Viable rice (var. FARO 44) seeds were sown in petri dishes and then inoculated with the three inocula at the different concentrations. The setup was studied for 28 days. Results 16S rRNA gene sequencing identified the isolates as: isolate BCAC2= Bacillus cereus strain GGBSU-1, isolate BCAF1= Proteus mirabilis strain TL14-1 and isolate EMBF2= Klebsiella variicola strain AUH-KAM-9. Significant improvement in rice germination, morphology, physiology and biomass parameters in the bacteria-inoculated setups was observed compared to the control. Germination percentage after 4 days was 100 % in the inoculated rice germinants compared to 65% in the control (NiS). Similarly, inoculation with the test isolates enhanced water-use efficiency by over 40%. The rice seedlings inoculated with Bacillus cereus strain GGBSU-1 (BiS) showed no signs of chlorosis and necrosis throughout the study period as against those inoculated with Proteus mirabilis strain TL14-1 (PiS) and Klebsiella variicola strain AUH-KAM-9 (KiS). Significant increase in chlorophyll-a, chlorophyll-b and alpha amylase was observed in the rice seedlings inoculated with BiS as against the NiS. Conclusion Inoculating rice seeds with Bacillus cereus strain GGBSU-1, Proteus mirabilis strain TL14-1 and Klebsiella variicola strain AUH-KAM-9 in an in vitro media significantly improved growth parameters of the test plant. Bacillus cereus strain GGBSU-1 showed higher efficiency due to a more improved growth properties observed.


Author(s):  
Sridevi Chigurupati ◽  
Shantini Vijayabalan ◽  
Kesavanarayanan Krishnan Selvarajan ◽  
Ahmad Alhowail ◽  
Fatema Kauser

AbstractObjectivesResearch on endosymbionts is emerging globally and is considered as a potential source of bioactive phytochemicals. The present study examines the antioxidant and antidiabetic of the endophytic crude extract isolated from Leucaena leucocephala leaves.MethodsEndophytic bacteria were isolated from the leaves of L. leucocephala and 16S rRNA gene sequencing was used to establish their identity. The in vitro antioxidant effect of endophytic crude extract (LL) was evaluated using 2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) free radical scavenging methods. The in vitro antidiabetic properties of LL were evaluated using α-amylase and α-glucosidase enzyme inhibition assay.ResultsThe isolated endophytic bacteria were identified as Cronobacter sakazakii. LL displayed potent free radical scavenging effect against ABTS and DPPH radicals with an inhibitory concentration 50% (IC50) value of 17.49 ± 0.06 and 11.3 ± 0.1 μg/mL respectively. LL exhibited α-amylase and α-glucosidase inhibition with an IC50 value of 23.3 ± 0.08 and 23.4 ± 0.1 μg/mL respectively compared to the standard drug (acarbose). Both glucose loaded normoglycemic rats and STZ induced diabetic rats treated with LL (200 mg/kg) exhibited a considerable reduction in blood glucose levels p<0.01 after 8 h of treatment when compared to normal and diabetic control rats respectively.ConclusionsThus, the study shows that LL has a wellspring of natural source of antioxidants, and antidiabetic agents and phytoconstituents present in endophytes could be the rich source for bioactive compounds.


Sign in / Sign up

Export Citation Format

Share Document