scholarly journals Pyrroloquinoline quinone ameliorates diabetic cardiomyopathy by inhibiting the pyroptosis signaling pathway in C57BL/6 mice and AC16 cells

Author(s):  
Xue-feng Qu ◽  
Bing-zhong Zhai ◽  
Wen-li Hu ◽  
Min-han Lou ◽  
Yi-hao Chen ◽  
...  

Abstract Purpose Diabetic cardiomyopathy (DCM), a common complication of diabetes mellitus and is characterized by myocardial hypertrophy and myocardial fibrosis. Pyrroloquinoline quinone (PQQ), a natural nutrient, exerts strong protection against various myocardial diseases. Pyroptosis, a type of inflammation-related programmed cell death, is vital to the development of DCM. However, the protective effects of PQQ against DCM and the associated mechanisms are not clear. This study aimed to investigate whether PQQ protected against DCM and to determine the underlying molecular mechanism. Methods Diabetes was induced in mice by intraperitoneal injection of streptozotocin, after which the mice were administered PQQ orally (10, 20, or 40 mg/kg body weight/day) for 12 weeks. AC16 human myocardial cells were divided into the following groups and treated accordingly: control (5.5 mmol/L glucose), high glucose (35 mmol/L glucose), and HG + PQQ groups (1 and 10 nmol/L PQQ). Cells were treated for 24 h. Results PQQ reduced myocardial hypertrophy and the area of myocardial fibrosis, which was accompanied by an increase in antioxidant function and a decrease in inflammatory cytokine levels. Moreover, myocardial hypertrophy—(ANP and BNP), myocardial fibrosis—(collagen I and TGF-β1), and pyroptosis-related protein levels decreased in the PQQ treatment groups. Furthermore, PQQ abolished mitochondrial dysfunction and the activation of NF-κB/IκB, and decreased NLRP3 inflammation-mediated pyroptosis in AC16 cells under high-glucose conditions. Conclusion PQQ improved DCM in diabetic mice by inhibiting NF-κB/NLRP3 inflammasome-mediated cell pyroptosis. Long-term dietary supplementation with PQQ may be greatly beneficial for the treatment of DCM. Graphical abstract Diagram of the underlying mechanism of the effects of PQQ on DCM. PQQ inhibits ROS generation and NF-κB activation, which stimulates activation of the NLRP3 inflammasome and regulates the expression of caspase-1, IL-1β, and IL-18. The up-regulated inflammatory cytokines trigger myocardial hypertrophy and cardiac fibrosis and promote the pathological process of DCM.

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Kaifeng Li ◽  
Mengen Zhai ◽  
Liqing Jiang ◽  
Fan Song ◽  
Bin Zhang ◽  
...  

Hyperglycemia-induced oxidative stress and fibrosis play a crucial role in the development of diabetic cardiomyopathy (DCM). Tetrahydrocurcumin (THC), a major bioactive metabolite of natural antioxidant curcumin, is reported to exert even more effective antioxidative and superior antifibrotic properties as well as anti-inflammatory and antidiabetic abilities. This study was designed to investigate the potential protective effects of THC on experimental DCM and its underlying mechanisms, pointing to the role of high glucose-induced oxidative stress and interrelated fibrosis. In STZ-induced diabetic mice, oral administration of THC (120 mg/kg/d) for 12 weeks significantly improved the cardiac function and ameliorated myocardial fibrosis and cardiac hypertrophy, accompanied by reduced reactive oxygen species (ROS) generation. Mechanically, THC administration remarkably increased the expression of the SIRT1 signaling pathway both in vitro and in vivo, further evidenced by decreased downstream molecule Ac-SOD2 and enhanced deacetylated production SOD2, which finally strengthened antioxidative stress capacity proven by repaired activities of SOD and GSH-Px and reduced MDA production. Additionally, THC treatment accomplished its antifibrotic effect by depressing the ROS-induced TGFβ1/Smad3 signaling pathway followed by reduced expression of cardiac fibrotic markers α-SMA, collagen I, and collagen III. Collectively, these finds demonstrated the therapeutic potential of THC treatment to alleviate DCM mainly by attenuating hyperglycemia-induced oxidative stress and fibrosis via activating the SIRT1 pathway.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Ershun Liang ◽  
Xue Liu ◽  
Zhanhui Du ◽  
Ruixue Yang ◽  
Yuxia Zhao

Andrographolide (Andro), a major bioactive component obtained from Andrographis paniculata Nees, has exerted wide antioxidant as well as cytoprotective properties. However, whether Andro treatment could retard the progress of diabetic cardiomyopathy (DCM) remains unknown. In this study, we evaluated the effects of Andro against diabetes-induced myocardial dysfunction and explored the underlying mechanism in STZ-induced diabetic mice. As a result, treatment with Andro dose dependently suppressed cardiac inflammation and oxidative stress, accompanied by decreasing cardiac apoptosis, which subsequently ameliorated cardiac fibrosis and cardiac hypertrophy. Further, Andro blocked hyperglycemia-triggered reactive oxygen species (ROS) generation by suppressing NADPH oxidase (NOX) activation and augmenting nuclear factor erythroid 2-related factor 2 (Nrf2) expression both in vitro and in vivo. Our results suggest that the cardioprotective effects afforded by Andro treatment involve the modulation of NOX/Nrf2-mediated oxidative stress and NF-κB-mediated inflammation. The present study unravels the therapeutic potential of Andro in the treatment of DCM by attenuating oxidative stress, inflammation, and apoptosis.


2019 ◽  
Vol 39 (8) ◽  
Author(s):  
Yao Ming-yan ◽  
Zhang Jing ◽  
Guo Shu-qin ◽  
Bai Xiao-liang ◽  
Li Zhi-hong ◽  
...  

Abstract Diabetes mellitus (DM) is a potential etiology of disc degeneration. Glucagon-like peptide-1 (GLP-1) is currently regarded as a powerful treatment option for type 2 diabetes. Apart from the beneficial effects on glycaemic control, GLP-1 has been reported to exert functions in a variety of tissues on modulation of cell proliferation, differentiation, and apoptosis. However, little is known regarding the effects of GLP-1 on nucleus pulposus cells (NPCs). In the present study, we investigated the effects of liraglutide (LIR), a long-lasting GLP-1 analogue, on apoptosis of human NPCs and the underlying mechanisms involved. We confirmed the presence of GLP-1 receptor (GLP-1R) in NPCs. Our data demonstrated that liraglutide inhibited the apoptosis of NPCs induced by high glucose (HG), as detected by Annexin V/Propidium Iodide (PI) and ELISA assays. Moreover, liraglutide down-regulated caspase-3 activity at intermediate concentration (100 nM) for maximum effect. Further analysis suggested that liraglutide suppressed reactive oxygen species (ROS) generation and stimulated the phosphorylation of Akt under HG condition. Pretreatment of cells with the Phosphoinositide 3-kinase (PI3K) inhibitor LY294002 (LY) and small interfering RNAs (siRNAs) GLP-1R abrogated the liraglutide-induced activation of Akt and the protective effects on NPCs’ apoptosis. In conclusion, liraglutide could directly protect NPCs against HG-induced apoptosis by inhibiting oxidative stress and activate the PI3K/Akt/caspase-3 signaling pathway via GLP-1R.


Author(s):  
Gholamreza Idari ◽  
Pouran Karimi ◽  
Samad Ghaffari ◽  
Seyed Isaac Hashemy ◽  
Baratali Mashkani

Diabetic cardiomyopathy (DC) is associated with impaired endoplasmic reticulum (ER) function, development of ER stress, and induction of cardiac cell apoptosis. Preventive effects of BiP inducer X (BIX) were investigated against DC characteristic changes in a type 2 diabetes rat model. To establish diabetes, a high-fat diet and a single dose of streptozotocin were administered. Then, animals were assigned into following groups: control, BIX, diabetic animals monitored for one, two, and three weeks. Diabetic rats treated with BIX for one, two, and three weeks. Expressions of various ER stress and apoptotic markers were assessed by immunoblotting method. CHOP gene expression was assessed by Real-time PCR. Tissue expression of BiP was evaluated by immunohistochemistry method. Hematoxylin and eosin and Masson's trichrome staining were performed to assess histological changes in the left ventricle. Cardiac cell apoptosis was examined using TUNEL assay. BIX administration suppressed the activation of the ER stress markers and cleavage of pro-caspase 3 in the diabetic rats. Likewise, tissue expression of BiP protein was increased, while CHOP mRNA levels were decreased. These results were accompanied by reducing cardiac fibrosis and myocardial cell apoptosis suggesting protective effects of BIX against the development of DC by decreasing cardiomyocyte apoptosis and fibrosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ling-Yu Zhang ◽  
Rui-Ting Lin ◽  
Hao-Ran Chen ◽  
Yong-Cong Yang ◽  
Meng-Fei Lin ◽  
...  

Cardiac fibrosis is evident even in the situation without a significant cardiomyocyte loss in diabetic cardiomyopathy and a high glucose (HG) level independently activates the cardiac fibroblasts (CFs) and promotes cell proliferation. Mitochondrial respiration and glycolysis, which are key for cell proliferation and the mitochondria-associated membranes (MAMs), are critically involved in this process. However, the roles and the underlying mechanism of MAMs in the proliferation of HG-induced CFs are largely unknown. The proliferation and apoptosis of CFs responding to HG treatment were evaluated. The MAMs were quantified, and the mitochondrial respiration and cellular glycolytic levels were determined using the Seahorse XF analyzer. The changes of signal transducer and activator of transcription 3 (STAT3) and mitofusin-2 (MFN2) in responding to HG were also determined, the effects of which on cell proliferation, MAMs, and mitochondrial respiration were assessed. The effects of STAT3 on MFN2 transcription was determined by the dual-luciferase reporter assay (DLRA) and chromatin immunoprecipitation (CHIP). HG-induced CFs proliferation increased the glycolytic levels and adenosine triphosphate (ATP) production, while mitochondrial respiration was inhibited. The MAMs and MFN2 expressions were significantly reduced on the HG treatment, and the restoration of MFN2 expression counteracted the effects of HG on cell proliferation, mitochondrial respiration of the MAMs, glycolytic levels, and ATP production. The mitochondrial STAT3 contents were not changed by HG, but the levels of phosphorylated STAT3 and nuclear STAT3 were increased. The inhibition of STAT3 reversed the reduction of MFN2 levels induced by HG. The DLRA and CHIP directly demonstrated the negative regulation of MFN2 by STAT3 at the transcription levels via interacting with the sequences in the MFN2 promoter region locating at about −400 bp counting from the start site of transcription. The present study demonstrated that the HG independently induced CFs proliferation via promoting STAT3 translocation to the nucleus, which switched the mitochondrial respiration to glycolysis to produce ATP by inhibiting MAMs in an MFN2-depression manner.


2017 ◽  
Vol 43 (1) ◽  
pp. 209-222 ◽  
Author(s):  
Xuexian Tan ◽  
Xiaohe Zheng ◽  
Zena Huang ◽  
Jiaqiong Lin ◽  
Chuli Xie ◽  
...  

Background: Contrast-induced acute kidney injury (CIAKI) is a common cause of hospital-acquired acute kidney injury (AKI). S100A8/A9-TLR4-NLRP3 inflammasome pathway triggers inflammation, apoptosis and tissue injury in several AKI models. Nevertheless, the underlying mechanism of S100A8/A9-TLR4-NLRP3 inflammasome pathway in CIKAI is not clear. We aimed to investigate the possible role of S100A8/A9-TLR4-NLRP3 inflammasome in the pathophysiology of CIAKI. Methods: We treated male rats and NRK-52E cells by iopromide to establish in vivo and in vitro models of CIAKI. We collected serum and urine samples to detect renal function. We obtained kidney tissue for histological analysis and detection of protein concentration. We used inhibitor of TLR4 and NLRP3-siRNA to further testify their role in CIAKI in NRK-52E cells. Results: Iopromide caused elevation of SCr, BUN and NGAL level, decrease of endogenous creatinine clearance, morphological injury and tubular apoptosis, enhanced IL-1β and IL-18 expression, and increased expression of S100A8/A9, TLR4 and NLRP3 inflammsome. In NRK-52E cells, iopromide caused enhanced apoptotic rates and ROS generation, which could be ameliorated by inhibitor of TLR4 and NLRP3-siRNA. Moreover, inhibition of TLR4 dampened NLRP3 expression. Conclusion: S100A8/A9-TLR4-NLRP3 inflammasome pathway represented a key mechanism of CI-AKI, which provided a potential therapeutic target.


2018 ◽  
Vol 38 (2) ◽  
Author(s):  
Wenping Wang ◽  
Pei Li ◽  
Jiagang Xu ◽  
Xiangkun Wu ◽  
Zhiliang Guo ◽  
...  

Background: Diabetes mellitus is closely correlated with disc degeneration. Nucleus pulposus (NP) cell apoptosis and senescence are typical cellular features within the degenerative disc. Resveratrol is a newly identified phytoalexin that has protective effects on cartilaginous tissue. Objective: To investigate the whether resveratrol can protect against high glucose-induced NP cell apoptosis and senescence, and the potential mechanism in this process. Methods: Rat NP cells were cultured in either 10% FBS culture medium (control group) or 10% FBS with a high glucose concentration (0.2 M, experiment group) for 3 days. Resveratrol or the combination of resveratrol and LY294002 was added into the culture medium of experiment group to investigate the effects of resveratrol and the PI3K/Akt pathway. Results: High glucose significantly promoted NP cell apoptosis and NP cell senescence compared with the control group. Resveratrol exhibited protective effects against high glucose-induced NP cell apoptosis and senescence. Further analysis showed that resveratrol suppressed reactive oxygen species (ROS) generation and increased the activity of the PI3K/Akt pathway under the high glucose condition. However, the LY294002 had no significant effects on ROS content in the resveratrol-treated high glucose group. Conclusion: Resveratrol can attenuate high glucose-induced NP cell apoptosis and senescence, and the activation of ROS-mediated PI3K/Akt pathway may be the potential mechanism in this process.


Sign in / Sign up

Export Citation Format

Share Document