Fabrication of large-area cylindrical microlens array based on electric-field-driven jet printing

2019 ◽  
Vol 25 (12) ◽  
pp. 4495-4503 ◽  
Author(s):  
Yujie Hu ◽  
Xiaoyang Zhu ◽  
Hongke Li ◽  
Lei Qian ◽  
Jianjun Yang ◽  
...  
2011 ◽  
Vol 123 (34) ◽  
pp. 8011-8015 ◽  
Author(s):  
Daigo Miyajima ◽  
Fumito Araoka ◽  
Hideo Takezoe ◽  
Jungeun Kim ◽  
Kenichi Kato ◽  
...  

2012 ◽  
Vol 30 (1) ◽  
pp. 49-56 ◽  
Author(s):  
M. Yamauchi ◽  
M. Takeda ◽  
M. Makino ◽  
T. Owada ◽  
I. Miyagi

Abstract. Radioactive materials from the accident at Fukushima Dai-ichi nuclear power plant (FNPP) in March 2011 spread over a large area, increasing the atmospheric electric conductivity by their ionizing effect, and reducing the vertical (downward) component of the DC electric field near the ground, or potential gradient (PG). PG data at Kakioka, 150 km away from the FNPP, showed independent changes compared to the radiation dose rate, and a comparison of these data revealed the local dynamics of the radioactive dust. (1) The initial drop of the PG to almost zero during 14–15 March is most likely due to radioactive dust suspended in the air near the ground during cloudy weather. (2) An episode of PG increase to more than 50 V m−1 on 16 March is most likely due to the re-suspension of the radioactive dust from the surface and subsequent removal from Kakioka by the strong wind from the non-contaminated area. (3) Low but finite values of the PG during 16–20 March most likely reflect a reduced amount of radioactive material near the ground after the above wind transported away the majority of the suspended radioactive dust. (4) Very low values of the PG after substantial rain on 20–22 March most likely reflect settlement of the radioactive material by rain-induced fallout. (5) Temporal recovery of daily variations from the end of March to the middle of April with low nighttime fair-weather baseline PG most likely reflects re-suspension of the radioactive dust into the air from the ground and trees, and subsequent transport to the other region or fallout to the ground until late April. (6) Weakening of the daily variation and gradual recovery of the nighttime fair-weather baseline after mid-April suggests a complete settlement of the radioactive material to the ground with partial migration to the subsurface.


2021 ◽  
pp. 2140009
Author(s):  
Huatan Chen ◽  
Guoyi Kang ◽  
Jiaxin Jiang ◽  
Juan Liu ◽  
Xiang Wang ◽  
...  

Printing orderly patterns on the insulating collector is the key for the development and application of flexible electronics. However, electrospinning on the insulating collector still has the problem of unstable jet due to the charge accumulation. The alternating current (AC)-induced electrohydrodynamic direct-writing (EDW) technology is a good way to decrease the interferences of charge repulsion, which is beneficial to printing orderly micro/nanostructures on the insulating collector. In this work, the sinusoidal AC-induced EDW is used to enhance the stability of charged jet and the deposition behaviors under AC electric field are also studied. The reciprocation transferring of charges induced by the AC electric field decreased the density of the accumulating charges on the insulating collector. The effect of AC electric field parameters on the direct-written micro/nanostructures are investigated to optimize the printing process. As the voltage peak increases, the fiber deposition bandwidth shows a trend of decreasing first and then increasing. Increasing the voltage frequency appropriately is beneficial to decrease the bandwidth of fiber deposition and to increase the stability of the jet. By improving the stability and controllability of the jet printing process, precise micro/nanopatterns can be direct-written on the insulating collector. This research provides a good foundation for expanding the application fields of EDW.


2011 ◽  
Vol 211-212 ◽  
pp. 1105-1109
Author(s):  
Xi Qiu Fan

Traditional optical lithography techniques to fabricate three-dimensional (3D) nanostructures are complicated and time consuming. Due to the capability to replicate nanostructures repeatedly in a large area with high resolution and uniformity, nanoimprint (NI) has been recognized as one of the promising approaches to fabricate 3-D nanostructures with high throughput and low cost. This paper introduces a novel 3-D nanostructure fabrication method by nanoimprint on silicon substrate. Nanoscale gratings and microlens array are taken as examples of 3-D nanostructures fabricated by nanoimprint. High fidelity demonstrates the possibility of nanoimprint to fabricate 3-D nanostructures on silicon substrate.


2020 ◽  
Vol 123 ◽  
pp. 105943 ◽  
Author(s):  
Xiaoyang Zhu ◽  
Zhenghao Li ◽  
Yujie Hu ◽  
Hongke Li ◽  
Jianjun Yang ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 65 ◽  
Author(s):  
Bing-Yau Huang ◽  
Shuan-Yu Huang ◽  
Chia-Hsien Chuang ◽  
Chie-Tong Kuo

This paper proposes an effective approach to fabricate a blue phase liquid crystal (BPLC) microlens array based on a photoconductive film. Owing to the characteristics of photo-induced conducting polymer polyvinylcarbazole (PVK), in which conductivity depends on the irradiation of UV light, a progressive mask resulting in the variation of conductivity is adopted to produce the gradient distribution of the electric field. The reorientations of liquid crystals according to the gradient distribution of the electric field induce the variation of the refractive index. Thus, the incident light experiences the gradient distribution of the refractive index and results in the focusing phenomenon. The study investigates the dependence of lens performance on UV exposure time, the focal length of the lens, and focusing intensities with various incident polarizations. The BPLC microlens array exhibits advantages such as electrically tunability, polarization independence, and fast response time.


2013 ◽  
Vol 03 (03) ◽  
pp. 1350017 ◽  
Author(s):  
Manwen Yao ◽  
Wei Shan

Dielectric behavior of aluminum oxide (Al2O3) thin film under high DC electric field is presented and discussed. Aluminum oxide thin films were prepared starting from aluminum isopropoxide as a precursor via a wet chemistry route. Silicon substrates and silica glass substrates were used to deposit the films via spin-coating technique. The deposited films were then annealed under 450°C–700°C for 2–3 h. Dense, crack-free and uniform films were obtained. The thickness of the films is in the range of 200–800 nm. The films obtained are in amorphous state as revealed by the X-ray diffraction patterns. Voltage–Current (V–I) characteristics of the films were used to study the dielectric behavior of the films. Very low leakage current density J under high DC electric field E can be obtained. The breakdown electric field of the films is around 1.2 MV/cm. The V–I characteristics of the films are slightly nonlinear. With platinum as bottom electrode and gold as top electrode, successive breakdown phenomena of the films under high DC electric field were observed. Each breakdown event of the film corresponds to a sharp spike at the V–I plot of the sample. The shape of the breakdown spots of the films are in crater-like with a breakdown channel of diameter around a few micrometers as revealed by SEM images. The top gold electrode at the breakdown spots either splashed out or ripped off from the breakdown spots, which isolated the breakdown spots from rest of the electrode, and made the successive breakdown of the sample possible. The breakdown spots of the sample are concentrated at the edge of the electrode with proportional spacing, which can be easily understood as the edge effect of the parallel capacitor configuration, while the uniform distribution of the breakdown spots signifies that the uniformity of the films thus prepared are satisfied. Breakdown spots apart from the electrode edge can also be observed. Most of such spots associated with ripped-off gold film electrode in large area. We suppose such breakdown took place at higher electric field after the successive breakdown at the electrode edge and the isolation of the edge part from rest of the sample. Higher energy is needed to tear off larger section of the electrode. The breakdown characteristics of the films reported in this work are useful for the further study to enhance the breakdown strength of the film.


2020 ◽  
Author(s):  
Yang-Yi Sun ◽  
Chieh-Hong Chen ◽  
Jann-Yenq Liu ◽  
Tsung-Yu Wu

<p>Solar activities can disturb the ionosphere globally and induce ionospheric weather phenomena that transit rapidly through a large area. By contrast, sometimes the ionospheric plasma density can remain high or low over a certain location for a few days, which are difficult to be attributed to solar activities. This study shows the location preference of the positive and negative total electron content (TEC) anomalies persisting continuously longer than 24 hours (cross the two terminators) at middle and low latitudes (within ±60ºN geomagnetic latitudes). The TEC is obtained from the global ionospheric map (GIM) of the Center for Orbit Determination in Europe (CODE) (ftp://cddis.gsfc.nasa.gov/pub/gps/products/ionex) under the geomagnetic quiet condition of Kp ≤ 3o during the period of 2005–2018. There are a few (less than 4%) TEC anomalies that can persist over 24 hours. The persistence of the positive TEC anomaly along the ring of fire on the western edge of the Pacific Ocean. The high persistence of the TEC anomalies at midlatitudes suggests that thermospheric neutral wind contributes to the anomaly formation. The temporal and spatial anomalies of the ionospheric electric field, atmospheric electric field (flash), atmospheric gravity wave, and neutral wind over the ring of fire should be further examined for explaining whether the persistence of the TEC anomalies associates with lithospheric activities.</p>


Sign in / Sign up

Export Citation Format

Share Document