Titanium dioxide nanoparticles as efficient catalyst for the synthesis of pyran’s annulated heterocyclic systems via three-component reaction

2015 ◽  
Vol 147 (7) ◽  
pp. 1221-1225 ◽  
Author(s):  
Ladan Edjlali ◽  
Rahim Hosseinzdeh Khanamiri
RSC Advances ◽  
2015 ◽  
Vol 5 (19) ◽  
pp. 14305-14310 ◽  
Author(s):  
Ardeshir Khazaei ◽  
Fatemeh Gholami ◽  
Vahid Khakyzadeh ◽  
Ahmad Reza Moosavi-Zare ◽  
Javad Afsar

Fe3O4@SiO2@TiO2 efficiently catalysed the preparation of tetrahydrobenzo[b]pyrans by a one-pot three component reaction of aldehydes, dimedone and malononitrile at 100 °C under solvent-free conditions.


2019 ◽  
Vol 16 (11) ◽  
pp. 915-921
Author(s):  
Nafiseh Yaltaghian-Khiabani ◽  
Shahrzad Abdolmohammadi ◽  
Sepehr Sadegh-Samiei

Pyridopyrimidines represent a highly important class of compounds which exhibit a wide spectrum of biological properties. Nanoscale metal oxide catalysts have been extensively studied for their application in organic reactions owing to their special features such as high surface area and pore sizes as supports. Titanium dioxide nanoparticles (TiO2 NPs) are an attractive candidate for readily available cheap nanocatalysts, due to their unique properties such as being non-toxic, moisture stable and reusable catalyst. 7-amino-2,4-dioxo-5-aryl-1,2,3,4-tetrahydropyrido[2,3-d]pyrimidine-6-carbonitriles were synthesized through the reaction of 4(6)-aminouracil, aromatic aldehydes, and malononitrile using calcined TiO2-SiO2 nanocomposite as a reusable catalyst in water at ambient temperature. All the synthesized compounds were well characterized by their elemental analyses, IR, 1H and 13C NMR spectroscopy. The synthesized catalyst was fully characterized by the powder X-ray diffraction (XRD), the scanning electron microcopy (SEM), the transmission electron microscopy (TEM), and the x-ray fluorescence (XRF) techniques. The reaction proceeded through calcined TiO2-SiO2 nanocomposite catalyzed three-component reaction affording twelve target compounds in high yields. This method introduced a novel protocol to provide 7-amino-2,4-dioxo-5-aryl-1,2,3,4-tetrahydropyrido[2,3- d]pyrimidine-6-carbonitrile derivatives and offer several advantages like very simple operation, using inexpensive, recyclable and non-toxic catalyst, mild reaction conditions, high yields of products (92- 98%), short reaction times (2.5-4 h), and green aspects by avoiding toxic catalysts and hazardous solvents.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4090
Author(s):  
Morteza Sheikhalipour ◽  
Behrooz Esmaielpour ◽  
Gholamreza Gohari ◽  
Maryam Haghighi ◽  
Hessam Jafari ◽  
...  

High salt levels are one of the significant and major limiting factors on crop yield and productivity. Out of the available attempts made against high salt levels, engineered nanoparticles (NPs) have been widely employed and considered as effective strategies in this regard. Of these NPs, titanium dioxide nanoparticles (TiO2 NPs) and selenium functionalized using chitosan nanoparticles (Cs–Se NPs) were applied for a quite number of plants, but their potential roles for alleviating the adverse effects of salinity on stevia remains unclear. Stevia (Stevia rebaudiana Bertoni) is one of the reputed medicinal plants due to their diterpenoid steviol glycosides (stevioside and rebaudioside A). For this reason, the current study was designed to investigate the potential of TiO2 NPs (0, 100 and 200 mg L−1) and Cs–Se NPs (0, 10 and 20 mg L−1) to alleviate salt stress (0, 50 and 100 mM NaCl) in stevia. The findings of the study revealed that salinity decreased the growth and photosynthetic traits but resulted in substantial cell damage through increasing H2O2 and MDA content, as well as electrolyte leakage (EL). However, the application of TiO2 NPs (100 mg L−1) and Cs–Se NPs (20 mg L−1) increased the growth, photosynthetic performance and activity of antioxidant enzymes, and decreased the contents of H2O2, MDA and EL under the saline conditions. In addition to the enhanced growth and physiological performance of the plant, the essential oil content was also increased with the treatments of TiO2 (100 mg L−1) and Cs–Se NPs (20 mg L−1). In addition, the tested NPs treatments increased the concentration of stevioside (in the non-saline condition and under salinity stress) and rebaudioside A (under the salinity conditions) in stevia plants. Overall, the current findings suggest that especially 100 mg L−1 TiO2 NPs and 20 mg L−1 Cs–Se could be considered as promising agents in combating high levels of salinity in the case of stevia.


Sign in / Sign up

Export Citation Format

Share Document