Oral self-nanoemulsifying formulation of GLP-1 agonist peptide exendin-4: development, characterization and permeability assesment on Caco-2 cell monolayer

Amino Acids ◽  
2021 ◽  
Author(s):  
Merve Celik Tekeli ◽  
Yesim Aktas ◽  
Nevin Celebi
Author(s):  
Awtar Krishan ◽  
Nestor Bohonos

Cytochalasin B, a mould metabolite from Helminthosporium dermatioideum has been shown to interfere with specific cell activities such as cytoplasmic cleavage and cell movement. Cells undergoing nuclear division in the presence of cytochalasin B are unable to complete the separation of the resulting daughter cells. In time-lapse studies, the daughter cells coalesce after an initial unsuccessful attempt at separation and form large multinucleate polyploid cells. The present report describes the fine structure of the large polyploid cells induced in Earle's L-cell monolayer cultures by exposure to cytochalasin B (lγ/ml) for 92 hours.In the present material we have seen as many as 7 nuclei in these polyploid cells. Treatment with cytochalasin B for longer periods of time (6 to 7 days, with one medium change on the 3rd day) did not increase the number of nuclei beyond the 7 nuclei stage. Figure 1 shows a large polyploid cell with four nuclei. These nuclei are indistinguishable in their fine structure from those of the cells from control cultures but often show unusually large numbers of cytoplasmic invaginations and extensions of the nuclear surface (Figure 2).


Author(s):  
K. Chien ◽  
R. Van de Velde ◽  
I.P. Shintaku ◽  
A.F. Sassoon

Immunoelectron microscopy of neoplastic lymphoma cells is valuable for precise localization of surface antigens and identification of cell types. We have developed a new approach in which the immunohistochemical staining can be evaluated prior to embedding for EM and desired area subsequently selected for ultrathin sectioning.A freshly prepared lymphoma cell suspension is spun onto polylysine hydrobromide- coated glass slides by cytocentrifugation and immediately fixed without air drying in polylysine paraformaldehyde (PLP) fixative. After rinsing in PBS, slides are stained by a 3-step immunoperoxidase method. Cell monolayer is then fixed in buffered 3% glutaraldehyde prior to DAB reaction. After the DAB reaction step, wet monolayers can be examined under LM for presence of brown reaction product and selected monolayers then processed by routine methods for EM and embedded with the Chien Re-embedding Mold. After the polymerization, the epoxy blocks are easily separated from the glass slides by heatingon a 100°C hot plate for 20 seconds.


2014 ◽  
Vol 1 (1) ◽  
pp. 62-67 ◽  
Author(s):  
M. Mandygra ◽  
A. Lysytsia

Aim. To investigate the effect of polyhexamethyleneguanidine (PHMG) to eukaryotic cell culture. Methods. The passaged bovine tracheal cells culture (TCC) and primary culture of chicken embryo fi broblasts (FCE) were used in the experiments. TCC and FCE monolayers were treated with aqueous solutions of PHMG chloride or succinate. The method of PHMG polycation adsorption to the cells’ plasma membrane together with microscopy were applied. Results. The dependence of PHMG effect on the eukaryotic cells on the agent concentration, duration of exposure and the anion type has been fi xed. The PHMG concentration of 10 –5 per cent (0.1 μg/ml) never causes degradation of the previously formed cell monolayer, while the higher concentrations damage it. The conditions of the PHMG chloride and succinate’s negative effect on cell proliferation and inhibition of monolayer formation were determined. The hypothesis that under certain conditions PHMG stimulates the proliferative activity of the cells has been confi rmed. Stimulation may be associated with non-specifi c stress adaptation of cells. In this case, it is due to modifi cations of the cell membrane after PHMG adsorption to it. Conclusions. PHMG polycation binds with the membrane’s phosphoglycerides fi rmly and irreversibly. A portion of the lipids are removed from participation in the normal cellular processes at that. At the same time, the synthesis of new lipids and membrane-bound enzymes is probably accelerated. The phospholip ids’ neogenesis acceleration can stimulate mitosis under certain conditions. The obtained results can be used in the biotechnologies.


Author(s):  
Н. Г. Крылова ◽  
Г. В. Грушевская ◽  
И. В. Липневич ◽  
Т. И. Ореховская ◽  
Г. Н. Семенкова ◽  
...  

2020 ◽  
Vol 4 (3) ◽  
pp. 150-155 ◽  
Author(s):  
Md. Mehadi Hasan Sohag ◽  
Olivier Nicoud ◽  
Racha Amine ◽  
Abir Khalil-Mgharbel ◽  
Jean-Pierre Alcaraz ◽  
...  

AbstractThe goal of this study was to determine whether the Tethapod system, which was designed to determine the impedance properties of lipid bilayers, could be used for cell culture in order to utilise micro-impedance spectroscopy to examine further biological applications. To that purpose we have used normal epithelial cells from kidney (RPTEC) and a kidney cancer cell model (786-O). We demonstrate that the Tethapod system is compatible with the culture of 10,000 cells seeded to grow on a small area gold measurement electrode for several days without affecting the cell viability. Furthermore, the range of frequencies for EIS measurements were tuned to examine easily the characteristics of the cell monolayer. We demonstrate significant differences in the paracellular resistance pathway between normal and cancer kidney epithelial cells. Thus, we conclude that this device has advantages for the study of cultured cells that include (i) the configuration of measurement and reference electrodes across a microfluidic channel, and (ii) the small surface area of 6 parallel measurement electrodes (2.1 mm2) integrated in a microfluidic system. These characteristics might improve micro-impedance spectroscopy measurement techniques to provide a simple tool for further studies in the field of the patho-physiology of biological barriers.


2019 ◽  
Vol 35 (6) ◽  
pp. 87-90
Author(s):  
S.V. Nikulin ◽  
V.A. Petrov ◽  
D.A. Sakharov

The real-time monitoring of electric capacitance (impedance spectroscopy) allowed obtaining evidence that structures which look like intestinal villi can be formed during the cultivation under static conditions as well as during the cultivation in microfluidic chips. It was shown in this work via transcriptome analysis that the Hh signaling pathway is involved in the formation of villus-like structures in vitro, which was previously shown for their formation in vivo. impedance spectroscopy, intestine, villi, electric capacitance, Hh The study was funded by the Russian Science Foundation (Project 16-19-10597).


2020 ◽  
Vol 25 (45) ◽  
pp. 4799-4805 ◽  
Author(s):  
Osvaldo Flores-Bastías ◽  
Gonzalo I. Gómez ◽  
Juan A. Orellana ◽  
Eduardo Karahanian

Background: High ethanol intake induces a neuroinflammatory response resulting in the subsequent maintenance of chronic alcohol consumption. The melanocortin system plays a pivotal role in the modulation of alcohol consumption. Interestingly, it has been shown that the activation of melanocortin-4 receptor (MC4R) in the brain decreases the neuroinflammatory response in models of brain damage other than alcohol consumption, such as LPS-induced neuroinflammation, cerebral ischemia, glutamate excitotoxicity, and spinal cord injury. Objectives: In this work, we aimed to study whether MC4R activation by a synthetic MC4R-agonist peptide prevents ethanol-induced neuroinflammation, and if alcohol consumption produces changes in MC4R expression in the hippocampus and hypothalamus. Methods: Ethanol-preferring Sprague Dawley rats were selected offering access to 20% ethanol on alternate days for 4 weeks (intermittent access protocol). After this time, animals were i.p. administered an MC4R agonist peptide in the last 2 days of the protocol. Then, the expression of the proinflammatory cytokines interleukin 6 (IL-6), interleukin 1-beta (IL-1β), and tumor necrosis factor-alpha (TNF-α) were measured in the hippocampus, hypothalamus and prefrontal cortex. It was also evaluated if ethanol intake produces alterations in the expression of MC4R in the hippocampus and the hypothalamus. Results: Alcohol consumption increased the expression of MC4R in the hippocampus and the hypothalamus. The administration of the MC4R agonist reduced IL-6, IL-1β and TNF-α levels in hippocampus, hypothalamus and prefrontal cortex, to those observed in control rats that did not drink alcohol. Conclusion: High ethanol consumption produces an increase in the expression of MC4R in the hippocampus and hypothalamus. The administration of a synthetic MC4R-agonist peptide prevents neuroinflammation induced by alcohol consumption in the hippocampus, hypothalamus, and prefrontal cortex. These results could explain the effect of α-MSH and other synthetic MC4R agonists in decreasing alcohol intake through the reduction of the ethanol-induced inflammatory response in the brain.


2019 ◽  
Vol 18 (26) ◽  
pp. 2209-2229 ◽  
Author(s):  
Hai Pham-The ◽  
Miguel Á. Cabrera-Pérez ◽  
Nguyen-Hai Nam ◽  
Juan A. Castillo-Garit ◽  
Bakhtiyor Rasulev ◽  
...  

One of the main goals of in silico Caco-2 cell permeability models is to identify those drug substances with high intestinal absorption in human (HIA). For more than a decade, several in silico Caco-2 models have been made, applying a wide range of modeling techniques; nevertheless, their capacity for intestinal absorption extrapolation is still doubtful. There are three main problems related to the modest capacity of obtained models, including the existence of inter- and/or intra-laboratory variability of recollected data, the influence of the metabolism mechanism, and the inconsistent in vitro-in vivo correlation (IVIVC) of Caco-2 cell permeability. This review paper intends to sum up the recent advances and limitations of current modeling approaches, and revealed some possible solutions to improve the applicability of in silico Caco-2 permeability models for absorption property profiling, taking into account the above-mentioned issues.


Sign in / Sign up

Export Citation Format

Share Document