scholarly journals Influence of grinding zones on the tooth root bending strength of case carburized gears

Author(s):  
Karl Jakob Winkler ◽  
Thomas Tobie ◽  
Karsten Stahl

AbstractKnowledge of the expected tooth root bending strength plays a decisive role in the design of gear sets. Due to dimensional and shape changes resulting from distortion due to the heat treatment, unintentional, partial grinding in the tooth root area may occur, particularly in the application range of large gears. The influences of an unintentional grinding zone on the tooth root bending strength have not yet been clarified with sufficient accuracy. As a result, grinding zones lead to uncertainties when evaluating the tooth root bending strength and thus to a loss of time and cost in the field of industrial practice.This paper presents experimental investigations on the influence of grinding zones on the tooth root bending strength of case carburized gears. For the experimental investigations, there are three unground reference variants with different blasting treatments: non-blasted, mechanical cleaned by shot blasting and shot peened. The unground reference variants are examined regarding their tooth root bending strength. For the other test gear variants, different grindings zones are applied resulting in light and strong material removal by grinding. The variants with the different grinding zones are examined analogously regarding their tooth root bending strength and are subsequently compared to the reference variants.The results of the experimental investigations show that grinding zones can have diverse influences on the tooth root bending strength of case carburized gears– Non-blasted gears do not show changes regarding the tooth root bending strength with regard to light or strong grinding zones applied within this investigation.– Shot blasted (mechanical cleaned) gears show no change in the tooth root bending strength for light grinding zones (grinding application does not significantly alter the original residual stress state in the tooth root area).– Shot blasted (mechanical cleaned) gears show a reduction of the tooth bending strength of up to 20 % with regard to strong grinding zones (grinding application does significantly alter the original residual stress state in the tooth root area).– Shot peened gears show a behavior similar to that of shot blasted gears with reductions of the tooth root bending strength of up to 30 %.– Shot peening the strong grinding zones as a repair measure can increase the reduced tooth root bending strength again. However, for the investigated test gears, the resulting tooth root bending strength was below the shot blasted reference variant.The results of this paper help to evaluate the influence of grinding zones on the tooth root bending strength of case carburized gears more precisely compared to the generalized reductions of current standards and classifications. The results can be incorporated in standards such as DIN 3390 as well as ISO 6336 and can be applied in the field of industrial practice. Eventually, the findings help to reduce the current loss of time and cost caused by uncertainties regarding grinding zones.

2010 ◽  
Vol 638-642 ◽  
pp. 2389-2394 ◽  
Author(s):  
Masahide Gotoh ◽  
Katsuhiro Seki ◽  
M. Shozu ◽  
Hajime Hirose ◽  
Toshihiko Sasaki

The fine-grained rolling steels NFG600 and the conventional usual rolling steels SM490 were processed by sand paper polishing and mechanical grinding to compare the residual stress generated after processing. The average grain size of NFG600 and SM490 is 3 μm and 15μm respectively. Therefore improvement of mechanical properties for such fine-grained steels is expected, it is important to understand the residual stress state of new fine-grained materials with processing. In this study, multi axial stresses of two kinds of specimens after polishing and grinding were measured by three kinds of analysis methods including cos-ψ method. As a result, as for σ33, the stress of NFG was compression, though that of SM490 was tension.


2022 ◽  
Vol 327 ◽  
pp. 272-278
Author(s):  
Elisa Fracchia ◽  
Federico Simone Gobber ◽  
Claudio Mus ◽  
Yuji Kobayashi ◽  
Mario Rosso

Nowadays, one of the most crucial focus in the aluminium-foundry sector is the production of high-quality castings. Mainly, High-Pressure Die Casting (HPDC) is broadly adopted, since by this process is possible to realize aluminium castings with thin walls and high specific mechanical properties. On the other hand, this casting process may cause tensile states into the castings, namely residual stresses. Residual stresses may strongly affect the life of the product causing premature failure of the casting. Various methods can assess these tensile states, but the non-destructive X-Ray method is the most commonly adopted. Namely, in this work, the residual stress analysis has been performed through Sinto-Pulstec μ-X360s. Detailed measurements have been done on powertrain components realized in aluminium alloy EN AC 46000 through HPDC processes to understand and prevent dangerous residual stress state into the aluminium castings. Furthermore, a comparison with stresses induced by Rheocasting processes is underway. In fact, it is well known that Semi-Solid metal forming combines the advantages of casting and forging, solving safety and environmental problems and possibly even the residual stress state can be positively affected.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7324
Author(s):  
Thomas Wild ◽  
Timo Platt ◽  
Dirk Biermann ◽  
Marion Merklein

Hot work tool steels (HWS) are widely used for high performance components as dies and molds in hot forging processes, where extreme process-related mechanical and thermal loads limit tool life. With the functionalizing and modification of tool surfaces with tailored surfaces, a promising approach is given to provide material flow control resulting in the efficient die filling of cavities while reducing the process forces. In terms of fatigue properties, the influence of surface modifications on surface integrity is insufficiently studied. Therefore, the potential of the machining processes of high-feed milling, micromilling and grinding with regard to the implications on the fatigue strength of components made of HWS (AISI H11) hardened to 50 ± 1 HRC was investigated. For this purpose, the machined surfaces were characterized in terms of surface topography and residual stress state to determine the surface integrity. In order to analyze the resulting fatigue behavior as a result of the machining processes, a rotating bending test was performed. The fracture surfaces were investigated using fractographic analysis to define the initiation area and to identify the source of failure. The investigations showed a significant influence of the machining-induced surface integrity and, in particular, the induced residual stress state on the fatigue properties of components made of HWS.


Author(s):  
I. Altenberger ◽  
Yuji Sano ◽  
M.A. Cherif ◽  
Ivan Nikitin ◽  
Berthold Scholtes

2013 ◽  
Vol 9 (12) ◽  
pp. 9503-9507 ◽  
Author(s):  
Patrick K.M. Tung ◽  
Stephen Mudie ◽  
John E. Daniels

2010 ◽  
Vol 438 ◽  
pp. 17-22 ◽  
Author(s):  
Berend Denkena ◽  
Bernd Breidenstein

Cohesive damage of PVD-coated cemented carbide cutting tools is ascribed to the residual stress state of the substrate subsurface. The present paper shows the formation of the substrate residual stress in the process chain as well as the stability of the single process steps referred to the scattering of the residual stress values. Depth resolved residual stress measurements across coating and substrate subsurface show a layer in the substrate, where possibly tensile stress occurs, from where cohesive damage may be initialized during tool use. Results of experiments are presented, where the influence of parameter variations in pre coating processes on the residual stress state is investigated. The characteristics of compressive residual substrate stress during the final PVD-process is presented as well as a correlation between coating and substrate stress.


2014 ◽  
Vol 996 ◽  
pp. 373-379 ◽  
Author(s):  
Aitor Lasaosa ◽  
Kizkitza Gurruchaga ◽  
Virginia García Navas ◽  
Ane Martínez-de-Guereñu

The use of magnetic Barkhausen noise (MBN) signal to non-destructively characterize the in-depth residual stress state of machined steel was investigated. The effect of the frequency of the magnetic field applied and of analysing the resulting MBN signal in different frequency bands for an in-depth residual stress characterisation is discussed. The effect of the residual stress on each of the parameters derived from the MBN signal is analysed comparing with the result of the XRD method.


Sign in / Sign up

Export Citation Format

Share Document