scholarly journals Comparison of structural features and in vitro digestibility of purple yam (Dioscorea alata L.) resistant starches by autoclaving and multi-enzyme hydrolysis

2017 ◽  
Vol 27 (1) ◽  
pp. 27-36 ◽  
Author(s):  
Tao Li ◽  
Fengping An ◽  
Hui Teng ◽  
Qun Huang ◽  
Feng Zeng ◽  
...  
2010 ◽  
Vol 5 (3) ◽  
pp. 1038-1048 ◽  
Author(s):  
Mária Hódsági ◽  
Tímea Gelencsér ◽  
Szilveszter Gergely ◽  
András Salgó

Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2727
Author(s):  
Qian Zhang ◽  
Jiangtao Yu ◽  
Kui Li ◽  
Junqiing Bai ◽  
Xiuyun Zhang ◽  
...  

Wheat flour was partially replaced by debittered acorn flour (DAF) with 0%, 10%, 15%, 20% as well as 25%. Rheological properties of wheat/acorn dough and quality and in vitro digestibility of its noodles were determined. Results showed that DAF addition significantly improved pasting viscosity and dough stability time while excessive addition weakened the protein network and decreased maximum fermentation height. Furthermore, noodles with substitutions exhibited promising technological properties as a food ingredient for noodle making (higher hardness, chewiness, gumminess, firmness, and less cooking time) but poor extensibility, smaller lightness values, and a slight deterioration in cooking quality. Furthermore, PCA and correlation analysis demonstrated a significant relationship between textural and cooking properties and pasting and mixing parameters. Moreover, SEM images of acorn noodles presented coarser surfaces but a tighter cross-section structure. Finally, in vitro digestibility results indicated that DAF addition significantly reduced the susceptibility of the starches to enzyme hydrolysis, while the addition of acorn flour slightly decreased the overall acceptability. Thus, the partial substitution of wheat flour with acorn flour can favorably be used in noodles formulation.


Author(s):  
Godfrey C. Hoskins ◽  
Betty B. Hoskins

Metaphase chromosomes from human and mouse cells in vitro are isolated by micrurgy, fixed, and placed on grids for electron microscopy. Interpretations of electron micrographs by current methods indicate the following structural features.Chromosomal spindle fibrils about 200Å thick form fascicles about 600Å thick, wrapped by dense spiraling fibrils (DSF) less than 100Å thick as they near the kinomere. Such a fascicle joins the future daughter kinomere of each metaphase chromatid with those of adjacent non-homologous chromatids to either side. Thus, four fascicles (SF, 1-4) attach to each metaphase kinomere (K). It is thought that fascicles extend from the kinomere poleward, fray out to let chromosomal fibrils act as traction fibrils against polar fibrils, then regroup to join the adjacent kinomere.


2018 ◽  
Vol 18 (1) ◽  
pp. 10-15
Author(s):  
Wang Yi-Wei ◽  
He Yong-Zhao ◽  
An Feng-Ping ◽  
Huang Qun ◽  
Zeng Feng ◽  
...  

In this study, Chinese yam starch-water suspension (8%) were subjected to high-pressure homogenization (HPH) at 100 MPa for increasing cycle numbers, and its effect of on the physicochemical properties of the starch was investigated. Results of the polarizing microscope observations showed that the starch granules were disrupted (i.e. greater breakdown value) after HPH treatment, followed by a decrease in cross polarization. After three HPH cycles, the crystallinity of starch decreased, while the crystal type remained unaltered. Meanwhile, the contents of rapidly digestible starch and slowly digestible starch were increased. On the contrary, resistant starch content was decreased. Our results indicate that HPH treatment resulted in reduction of starch crystallinity and increase of starch digestibility.


2018 ◽  
Vol 24 (17) ◽  
pp. 1899-1904
Author(s):  
Daniel Fabio Kawano ◽  
Marcelo Rodrigues de Carvalho ◽  
Mauricio Ferreira Marcondes Machado ◽  
Adriana Karaoglanovic Carmona ◽  
Gilberto Ubida Leite Braga ◽  
...  

Background: Fungal secondary metabolites are important sources for the discovery of new pharmaceuticals, as exemplified by penicillin, lovastatin and cyclosporine. Searching for secondary metabolites of the fungi Metarhizium spp., we previously identified tyrosine betaine as a major constituent. Methods: Because of the structural similarity with other inhibitors of neprilysin (NEP), an enzyme explored for the treatment of heart failure, we devised the synthesis of tyrosine betaine and three analogues to be subjected to in vitro NEP inhibition assays and to molecular modeling studies. Results: In spite of the similar binding modes with other NEP inhibitors, these compounds only displayed moderate inhibitory activities (IC50 ranging from 170.0 to 52.9 µM). However, they enclose structural features required to hinder passive blood brain barrier permeation (BBB). Conclusions: Tyrosine betaine remains as a starting point for the development of NEP inhibitors because of the low probability of BBB permeation and, consequently, of NEP inhibition at the Central Nervous System, which is associated to an increment in the Aβ levels and, accordingly, with a higher risk for the onset of Alzheimer's disease.


2020 ◽  
Vol 21 (10) ◽  
pp. 955-964 ◽  
Author(s):  
Mengjie Liu ◽  
John Wade ◽  
Mohammed Akhter Hossain

: Ghrelin is a 28-amino acid octanoylated peptide hormone that is implicated in many physiological and pathophysiological processes. Specific visualization of ghrelin and its cognate receptor using traceable ligands is crucial in elucidating the localization, functions, and expression pattern of the peptide’s signaling pathway. Here 12 representative radio- and fluorescently-labeled peptide-based ligands are reviewed for in vitro and in vivo imaging studies. In particular, the focus is on their structural features, pharmacological properties, and applications in further biochemical research.


2018 ◽  
Vol 18 (5) ◽  
pp. 321-368 ◽  
Author(s):  
Juan A. Bisceglia ◽  
Maria C. Mollo ◽  
Nadia Gruber ◽  
Liliana R. Orelli

Neglected diseases due to the parasitic protozoa Leishmania and Trypanosoma (kinetoplastids) affect millions of people worldwide, and the lack of suitable treatments has promoted an ongoing drug discovery effort to identify novel nontoxic and cost-effective chemotherapies. Polyamines are ubiquitous small organic molecules that play key roles in kinetoplastid parasites metabolism, redox homeostasis and in the normal progression of cell cycles, which differ from those found in the mammalian host. These features make polyamines attractive in terms of antiparasitic drug development. The present work provides a comprehensive insight on the use of polyamine derivatives and related nitrogen compounds in the chemotherapy of kinetoplastid diseases. The amount of literature on this subject is considerable, and a classification considering drug targets and chemical structures were made. Polyamines, aminoalcohols and basic heterocycles designed to target the relevant parasitic enzyme trypanothione reductase are discussed in the first section, followed by compounds directed to less common targets, like parasite SOD and the aminopurine P2 transporter. Finally, the third section comprises nitrogen compounds structurally derived from antimalaric agents. References on the chemical synthesis of the selected compounds are reported together with their in vivo and/or in vitro IC50 values, and structureactivity relationships within each group are analyzed. Some favourable structural features were identified from the SAR analyses comprising protonable sites, hydrophobic groups and optimum distances between them. The importance of certain pharmacophoric groups or amino acid residues in the bioactivity of polyamine derived compounds is also discussed.


Sign in / Sign up

Export Citation Format

Share Document