scholarly journals Crosstalk between cancer-associated fibroblasts and immune cells in peritoneal metastasis: inhibition in the migration of M2 macrophages and mast cells by Tranilast

2022 ◽  
Author(s):  
Yusuke Nakamura ◽  
Jun Kinoshita ◽  
Takahisa Yamaguchi ◽  
Tatsuya Aoki ◽  
Hiroto Saito ◽  
...  

Abstract Background The role of tumor–stroma interactions in tumor immune microenvironment (TME) is attracting attention. We have previously reported that cancer-associated fibroblasts (CAFs) contribute to the progression of peritoneal metastasis (PM) in gastric cancer (GC), and M2 macrophages and mast cells also contribute to TME of PM. To elucidate the role of CAFs in TME, we established an immunocompetent mouse PM model with fibrosis, which reflects clinical features of TME. However, the involvement of CAFs in the immunosuppressive microenvironment remains unclear. In this study, we investigated the efficacy of Tranilast at modifying this immune tolerance by suppressing CAFs. Methods The interaction between mouse myofibroblast cell line LmcMF and mouse GC cell line YTN16 on M2 macrophage migration was investigated, and the inhibitory effect of Tranilast was examined in vitro. Using C57BL/6J mouse PM model established using YTN16 with co-inoculation of LmcMF, TME of resected PM treated with or without Tranilast was analyzed by immunohistochemistry. Results The addition of YTN16 cell-conditioned medium to LmcMF cells enhanced CXCL12 expression and stimulated M2 macrophage migration, whereas Tranilast inhibited the migration ability of M2 macrophages by suppressing CXCL12 secretion from LmcMF. In PM model, Tranilast inhibited tumor growth and fibrosis, M2 macrophage, and mast cell infiltration and significantly promoted CD8 + lymphocyte infiltration into the tumor, leading to apoptosis of cancer cells by an immune response. Conclusion Tranilast improved the immunosuppressive microenvironment by inhibiting CAF function in a mouse PM model. Tranilast is thus a promising candidate for the treatment of PM.

BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Xueqing Sun ◽  
Qing Qu ◽  
Yimin Lao ◽  
Mi Zhang ◽  
Xiaoling Yin ◽  
...  

Abstracts Background Interleukin-6 (IL-6) is commonly highly secreted in the breast cancer (BrCA) microenvironment and implicated in disease development. In this study, we aimed to determine the role of the IL-6/pSTAT3/HIC1 axis in the breast cancer microenvironment, including in cancer-associated fibroblasts (CAFs) and breast cancer cells. Methods Stromal fibroblasts from the breast cancer tissue were isolated, and the supernatants of the fibroblasts were analyzed. Recombinant human IL-6 (rhIL-6) was applied to simulate the effect of CAF-derived IL-6 to study the mechanism of HIC1 (tumor suppressor hypermethylated in cancer 1) downregulation. IL-6 was knocked down in the high IL-6-expressing BrCA cell line MDA-MB-231, which enabled the investigation of the IL-6/pSTAT3/HIC1 axis in the autocrine pathway. Results Increased IL-6 was found in the supernatant of isolated CAFs, which suppressed HIC1 expression in cancer cells and promoted BrCA cell proliferation. After stimulating the BrCA cell line SK-BR-3 (where IL-6R is highly expressed) with rhIL-6, signal transducers and activators of transcription 3 (STAT3) was found to be phosphorylated and HIC1 decreased, and a STAT3 inhibitor completely rescued HIC1 expression. Moreover, HIC1 was restored upon knocking down IL-6 expression in MDA-MB-231 cells, accompanied by a decrease in STAT3 activity. Conclusions These findings indicate that IL-6 downregulates the tumor suppressor HIC1 and promotes BrCA development in the tumor microenvironment through paracrine or autocrine signaling.


2020 ◽  
Author(s):  
Daisuke Fujimori ◽  
Jun Kinoshita ◽  
Takahisa Yamaguchi ◽  
Yusuke Nakamura ◽  
Katsuya Gunjigake ◽  
...  

Abstract Background Peritoneal metastasis (PM) in gastric cancer (GC) is characterized by diffusely infiltrating and proliferating cancer cells accompanied by extensive stromal fibrosis in the peritoneal space. The prognosis of GC with PM is still poor regardless of the various current treatments. In order to elucidate the cause of difficulties in PM treatment, we compared the tumor immune microenvironment (TME) in primary and PM lesions in GC. In addition, a PM model with fibrous stroma was constructed using immunocompetent mice to determine whether its TME was similar to that in patients. MethodsImmuno-histochemical analyses of infiltrating immune cells were performed in paired primary and PM lesions from 28 patients with GC. A C57BL/6J mouse model with PM was established using the mouse GC cell line YTN16 either with or without co-inoculation of mouse myofibroblast cell line LmcMF with a-SMA expression. The resected PM from each mouse model was analyzed the immunocompetent cells using immunohistochemistry.ResultsThe number of CD8+ cells was significantly lower in PM lesions than in primary lesions (P<0.01). Conversely, the number of CD163+ cells (M2 macrophages) was significantly higher in PM lesions than in primary lesions (P=0.016). Azan staining revealed that YTN16 and LmcMF co-inoculated tumors were more fibrous than tumor with YTN16 alone (P<0.05). Co-inoculated fibrous tumor also showed an invasive growth pattern and higher progression than tumor with YTN16 alone (P=0.045). Additionally, YTN16 and LmcMF co-inoculated tumors showed lower infiltration of CD8+ cells and higher infiltration of M2 macrophages than tumors with YTN16 alone (P<0.05, P<0.05). These results indicate that LmcMF plays as cancer-associated fibroblasts (CAFs) by crosstalk with YTN16 and CAFs contribute tumor progression, invasion, fibrosis, and immune suppression.ConclusionsThis model is the first immunocompetent mouse model similar to TME of human clinical PM with fibrosis. By using this model, new treatment strategies for PM, such as anti-CAFs therapies, may be developed.


2020 ◽  
Vol 10 (7) ◽  
pp. 424
Author(s):  
Sarah Vakili ◽  
Taha Mohseni Ahooyi ◽  
Shadan S. Yarandi ◽  
Martina Donadoni ◽  
Jay Rappaport ◽  
...  

Several factors can contribute to neuroinflammatory disorders, such as cytokine and chemokines that are produced and released from peripherally derived immune cells or from locally activated cells such as microglia and perivascular macrophages in the brain. The primary function of these cells is to clear inflammation; however, following inflammation, circulating monocytes are recruited to the central nervous system (CNS). Monocyte-derived macrophages in the CNS play pivotal roles in mediating neuroinflammatory responses. Macrophages are heterogeneous both in normal and in pathological conditions due to their plasticity, and they are classified in two main subsets, classically activated (M1) or alternatively activated (M2). There is accumulating evidence suggesting that extracellular vesicles (EVs) released from activated immune cells may play crucial roles in mediating inflammation. However, a possible role of EVs released from immune cells such as M1 and M2 macrophages on neuronal functions in the brain is not known. In order to investigate the molecular and cellular impacts of macrophages and EVs released from macrophage subtypes on neuronal functions, we used a recently established in vitro M1 and M2 macrophage culture model and isolated and characterized EVs from these macrophage subtypes, treated primary neurons with M1 or M2 EVs, and analyzed the extracellular action potentials of neurons with microelectrode array studies (MEA). Our results introduce evidence on the interfering role of inflammatory EVs released from macrophages in interneuronal signal transmission processes, with implications in the pathogenesis of neuroinflammatory diseases induced by a variety of inflammatory insults.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi261-vi261
Author(s):  
Sungho Lee ◽  
Khatri Latha ◽  
Ganesh Rao

Abstract High-grade gliomas (HGGs), including the most common primary brain tumor, glioblastoma (GBM), may arise from malignant transformation of low-grade gliomas (LGGs). While LGGs are often clinically indolent, GBMs have dismal outcomes despite maximal therapy. Accumulating data suggest that chemokine signaling directly contributes to malignant transformation of LGGs by altering tumor behavior or impacting the immune microenvironment. Here, we examined the role of CX3CR1 signaling in the malignant transformation of LGGs. First, patients with malignantly transformed LGGs were genotyped for the presence of the common loss-of-function CX3CR1 V249I polymorphism, and median overall survival was compared between the genotypes. Second, RNA sequencing data was analyzed for differential gene expression based on genotype. Third, surgical samples were examined for altered expression of M2 macrophage markers and microvessel density between the genotypes. Finally, a genetically-engineered murine model was leveraged to model endogenous intracranial gliomas with targeted expression of CX3CL1 and CX3CR1, individually or in combination. Our data demonstrate that heterozygosity (V/I) or homozygosity (I/I) for the loss-of-function CX3CR1 polymorphism was associated with significantly better median overall survival in patients with LGGs that have transformed to HGGs, compared to the wild type genotype (V/V). In addition, HGGs from V/I and I/I genotypes exhibit significantly decreased levels of CCL2, important for the recruitment of M2 macrophages, as well as decreased levels of ANGPT1 and MMP9, which mediate angiogenesis. This correlates with reduced intratumoral accumulation of CD204 positive macrophages and microvessel density in tumors from V/I and I/I patients. Finally, in the RCAS-PDGFB driven model of LGG, co-expression of CX3CL1 and CX3CR1 promotes more malignant tumor phenotype and shorter tumor-free survival. Taken together, our results show that CX3CR1 signaling promotes malignant transformation of LGGs via accumulation of glioma associated M2 macrophages and microglia and increased angiogenesis.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Daisuke Fujimori ◽  
Jun Kinoshita ◽  
Takahisa Yamaguchi ◽  
Yusuke Nakamura ◽  
Katsuya Gunjigake ◽  
...  

Abstract Background Peritoneal metastasis (PM) in gastric cancer (GC) is characterized by diffusely infiltrating and proliferating cancer cells accompanied by extensive stromal fibrosis in the peritoneal space. The prognosis of GC with PM is still poor regardless of the various current treatments. In order to elucidate the cause of difficulties in PM treatment, we compared the tumor immune microenvironment (TME) in primary and PM lesions in GC. In addition, a PM model with fibrous stroma was constructed using immunocompetent mice to determine whether its TME was similar to that in patients. Methods Immuno-histochemical analyses of infiltrating immune cells were performed in paired primary and PM lesions from 28 patients with GC. A C57BL/6 J mouse model with PM was established using the mouse GC cell line YTN16 either with or without co-inoculation of mouse myofibroblast cell line LmcMF with α-SMA expression. The resected PM from each mouse model was analyzed the immunocompetent cells using immunohistochemistry. Results The number of CD8+ cells was significantly lower in PM lesions than in primary lesions (P < 0.01). Conversely, the number of CD163+ cells (M2 macrophages) was significantly higher in PM lesions than in primary lesions (P = 0.016). Azan staining revealed that YTN16 and LmcMF co-inoculated tumors were more fibrous than tumor with YTN16 alone (P < 0.05). Co-inoculated fibrous tumor also showed an invasive growth pattern and higher progression than tumor with YTN16 alone (P = 0.045). Additionally, YTN16 and LmcMF co-inoculated tumors showed lower infiltration of CD8+ cells and higher infiltration of M2 macrophages than tumors with YTN16 alone (P < 0.05, P < 0.05). These results indicate that LmcMF plays as cancer-associated fibroblasts (CAFs) by crosstalk with YTN16 and CAFs contribute tumor progression, invasion, fibrosis, and immune suppression. Conclusions This model is the first immunocompetent mouse model similar to TME of human clinical PM with fibrosis. By using this model, new treatment strategies for PM, such as anti-CAFs therapies, may be developed.


2020 ◽  
Author(s):  
Daisuke Fujimori ◽  
Jun Kinoshita ◽  
Takahisa Yamaguchi ◽  
Yusuke Nakamura ◽  
Katsuya Gunjigake ◽  
...  

Abstract Background Peritoneal metastasis (PM) in gastric cancer (GC) is characterized by diffusely infiltrating and proliferating cancer cells accompanied by extensive stromal fibrosis in the peritoneal space. The prognosis of GC with PM is still poor regardless of the various current treatments. In order to elucidate the cause of difficulties in PM treatment, we compared the tumor immune microenvironment (TME) in primary and PM lesions in GC. In addition, a PM model with fibrous stroma was constructed using immunocompetent mice to determine whether its TME was similar to that in patients. MethodsImmuno-histochemical analyses of infiltrating immune cells were performed in paired primary and PM lesions from 28 patients with GC. A C57BL/6J mouse model with PM was established using the mouse GC cell line YTN16 either with or without co-inoculation of mouse myofibroblast cell line LmcMF with a-SMA expression. The resected PM from each mouse model was analyzed the immunocompetent cells using immunohistochemistry.ResultsThe number of CD8+ cells was significantly lower in PM lesions than in primary lesions (P<0.01). Conversely, the number of CD163+ cells (M2 macrophages) was significantly higher in PM lesions than in primary lesions (P=0.016). Azan staining revealed that YTN16 and LmcMF co-inoculated tumors were more fibrous than tumor with YTN16 alone (P<0.05). Co-inoculated fibrous tumor also showed an invasive growth pattern and higher progression than tumor with YTN16 alone (P=0.045). Additionally, YTN16 and LmcMF co-inoculated tumors showed lower infiltration of CD8+ cells and higher infiltration of M2 macrophages than tumors with YTN16 alone (P<0.05, P<0.05). These results indicate that LmcMF plays as cancer-associated fibroblasts (CAFs) by crosstalk with YTN16 and CAFs contribute tumor progression, invasion, fibrosis, and immune suppression.ConclusionsThis model is the first immunocompetent mouse model to accurately reflect the TME of human clinical PM. By using this model, new treatment strategies for PM, such as anti-CAFs therapies, may be developed.


Author(s):  
Tao Yang ◽  
Zhengdong Deng ◽  
Lei Xu ◽  
Xiangyu Li ◽  
Tan Yang ◽  
...  

Abstract Background Recent data indicated that macrophages may mutually interact with cancer cells to promote tumor progression and chemoresistance, but the interaction in cholangiocarcinoma (CCA) is obscure. Methods 10x Genomics single-cell sequencing technology was used to identified the role of macrophages in CCA. Then, we measured the expression and prognostic role of macrophage markers and aPKCɩ in 70 human CCA tissues. Moreover, we constructed monocyte-derived macrophages (MDMs) generated from peripheral blood monocytes (PBMCs) and polarized them into M1/M2 macrophages. A co-culture assay of the human CCA cell lines (TFK-1, EGI-1) and differentiated PBMCs-macrophages was established, and functional studies in vitro and in vivo was performed to explore the interaction between cancer cells and M2 macrophages. Furthermore, we established the cationic liposome-mediated co-delivery of gemcitabine and aPKCɩ-siRNA and detect the antitumor effects in CCA. Results M2 macrophage showed tumor-promoting properties in CCA. High levels of aPKCɩ expression and M2 macrophage infiltration were associated with metastasis and poor prognosis in CCA patients. Moreover, CCA patients with low M2 macrophages infiltration or low aPKCɩ expression benefited from postoperative gemcitabine-based chemotherapy. Further studies showed that M2 macrophages-derived TGFβ1 induced epithelial-mesenchymal transition (EMT) and gemcitabine resistance in CCA cells through aPKCɩ-mediated NF-κB signaling pathway. Reciprocally, CCL5 was secreted more by CCA cells undergoing aPKCɩ-induced EMT and consequently modulated macrophage recruitment and polarization. Furthermore, the cationic liposome-mediated co-delivery of GEM and aPKCɩ-siRNA significantly inhibited macrophages infiltration and CCA progression. Conclusion our study demonstrates the role of Macrophages-aPKCɩ-CCL5 Feedback Loop in CCA, and proposes a novel therapeutic strategy of aPKCɩ-siRNA and GEM co-delivered by liposomes for CCA.


2021 ◽  
Author(s):  
Kevin Christian M. Gulay ◽  
Keisuke Aoshima ◽  
Naoya Maekawa ◽  
Satoru Konnai ◽  
Atsushi Kobayashi ◽  
...  

Hemangiosarcoma (HSA) is a malignant tumor derived from endothelial cells. Tumor-associated macrophages are one of the major components of tumor microenvironment and crucial for cancer development. The presence and function of macrophages in HSA have not been studied because there is no syngeneic model for HSA. In this study, we evaluated two mouse HSA cell lines and one immortalized mouse endothelial cells for their usefulness as syngeneic models for canine HSA. Our results show that the ISOS-1 cell line develops tumors with similar morphology to canine HSA. ISOS-1 cells highly express KDM2B and have similar KDM2B target expression patterns with canine HSA. Moreover, we determine that in both ISOS-1 and canine HSA tumors, macrophages are present as a major constituent of the tumor microenvironment. These macrophages are positive for CD204, an M2 macrophage marker, and express PD-L1. ISOS-1-conditioned medium can induce M2 polarization and PD-L1 expression in RAW264.7 mouse macrophage cell line. These results show that ISOS-1 can be used as a syngenic model for canine HSA and suggest that macrophages play an important role in immune evasion in HSA. Using the syngeneic mouse model for canine HSA, we can further study the role of immune cells in the pathology of HSA.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4204-4204 ◽  
Author(s):  
Yu Wu ◽  
Xinyi Chen ◽  
Yuhuan Zheng

Abstract Objective The aim of this study is to explore the role of tumor associated macrophages (TAMs) in the prognosis, early treatment response of multiple myeloma and to investigate the role of TAMs on the proliferation, apoptosis£¬oncogene expression and chemotaxis of myeloma cells. Methods 1 In vivo we retrospectively collected and analyzed 240 patients initially diagnosed wih multiple myeloma and their bone marrow biopsy tissue from Jan, 2009 to June, 2014 in West China Hospital, Sichuan University, China. All the patients enrolled in this study were followed up till April, 2015. We observed and quantified the involvement of macrophage (M¦µ), classic activated macrophage (M1 M¦µ) and alternatively activated macrophage (M2 M¦µ) in bone marrow by immunohistochemical staining of anti-CD68 monoclonal antibody, anti-iNOS monoclonal antibody and anti-CD163 monoclonal antibody, respectively. We analyzed the relation between macrophage involvement with International Staging System (ISS) and the clinical response as well. The effect of different type macrophage involvement on prognosis, progression-free survival and overall survival were estimated. Time-to-event data were analyzed with the Kaplan-Meier method, and the differences were calculated using the Log-rank and Breslow tests. Cox proportional-hazards models were used to estimate hazard ratios and 95% confidence intervals for the main comparisons. 2 In vitro we induced human peripheral blood mononuclear cell£¨PBMC£© and human monocytic THP-1 cells to M2 macrophages with M-CSF or PMA in the presence of IL-4/13 in vitro. Macrophages were identified by morphology and flow cytometry. Two myeloma cell lines (RPMI 8226 and U266) were cocultured with M2 macrophages by using a transwell system. We measured myeloma cells proliferation through CCK-8 method and the pro-inflammatory cytokines expression (TNF-¦Á and IL-6) by ELISA. Real time PCR was applied to measure chemokines (CCL2 and CCL3), chemokine receptors (CCR2, CCR1, CCR5), vascular endothelial growth factor (VEGFA, VEGFB and VEGFC), VEGF receptors (VEGFR1-3), proto-oncogene serine/threonine-protein kinase Pim (PIM1-3). In addition, flow cytometry was used to analyze the apoptosis of myeloma cells induced by dexamethasone. Results 1 patients with high M2 macrophage involvement (>40/hp) in bone marrow showed poorer response (including complete response and partial response after 3 cycles of chemotherapy) to Dexamethasone-containing regimen (23.9% versus 73%, P=5x10-13). On the contrary, the patients with high M1 macrophage involvement demonstrated much better response to regimen than low M1 macrophage (69.6 versus 40.6%, P=5x10-5). 2 Both progression-free survival and overall survival were significantly shorter with high M2 macrophage involvement than low involvement (median progression-free survival, 12.9 months vs. 39 months; hazard ratio for progression, 1.77, 95% confidence interval [CI], 1.14 to 2.74; P=0.01; and overall survival, 4.9 months vs. 59.2 months; hazard ratio for death, 2.63; 95% CI, 1.75 to 3.95; P<0.001). 3 In vitro M2 macrophage stimulate myeloma cell proliferation. 4 In vitro M2 macrophage protect myeloma cells from dexamethasone induced apoptosis. 5 In vitro M2 macrophage promote myeloma cells secreting higher level of IL-6, TNF-¦Á and higher expression of CCL2, CCL3, CCR2, CCR5, VEGFA, VEGFR-1,-2, PIM-1, PIM-2 compared with the non-macrophage coculture system. Conclusion TAMs are associated with early clinical response and prognosis. Notably, M2 macrophages involvement has been shown strongly negatively associated with progression-free survival and overall survival. M2 macrophages promote myeloma cells proliferation and protect from apoptosis through a very complex mechanism involving pro-inflammatory cytokines IL-6 and TNF-¦Á, chemokines and related receptors such as CCL2, CCL3, CCR2 and CCR3, VEGF, VEGFR and PIM1, PIM2. Figure 1. Kaplan-Meier Analysis of PFS and OS in multiple myeloma patients in total Macrophage subgroups (A), M1 subgroups (B) and M2 subgroups(C). Figure 1. Kaplan-Meier Analysis of PFS and OS in multiple myeloma patients in total Macrophage subgroups (A), M1 subgroups (B) and M2 subgroups(C). Figure 2. Macrophages promote myeloma cells proliferation. Figure 2. Macrophages promote myeloma cells proliferation. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document