Bioremediation potential and lead removal capacity of heavy metal-tolerant yeasts isolated from Dayet Oum Ghellaz Lake water (northwest of Algeria)

Author(s):  
Chahrazed Aibeche ◽  
Nawel Selami ◽  
Fatima El-Houaria Zitouni-Haouar ◽  
Khadidja Oeunzar ◽  
Amira Addou ◽  
...  
2013 ◽  
Vol 5 (2) ◽  
pp. 345-348 ◽  
Author(s):  
MAA Mokaddes ◽  
BS Nahar ◽  
MA Baten

A study was conducted to evaluate level of water pollution and its influence on heavy metal contaminations of lake water of Dhaka metropolitan city. The water samples were collected from lakes of Dhaka metropolitan city during February to March, 2008. The chemical analysis of water samples included pH, EC, As, Cu, Mn, 'ln. Pb and Cd. Analysis of lake water samples was done at the Central Laboratory of Bangladesh Agricultural University, Mymensingh. The concentrations of heavy metal of lake water were recorded as: in case of pH = 6.95, in case of EC = 22.44 (?scm-1), in case of Cu = 0.018 ppm, in case of Zn = 0.274 ppm, in case of Mn = 0.084 ppm, in case of As = 0.002 ppb, in case of Pb = 0.002 ppm and in case of Cd = 0.044 ppm. The pH value of lakes water range from 5.34 to 7.68, an indication of slightly acidic to alkaline in nature. The average EC value for lakes water ranged from 17.61 to 34.61 ?Scm-1 where EC value varied from 14.24 to 33.48 ?Scm-1 in the lake water.DOI: http://dx.doi.org/10.3329/jesnr.v5i2.14841 J. Environ. Sci. & Natural Resources, 5(2): 345-348 2012


2021 ◽  
Vol 12 ◽  
Author(s):  
Sebastian Schaefer ◽  
Robin Steudtner ◽  
René Hübner ◽  
Evelyn Krawczyk-Bärsch ◽  
Mohamed L. Merroun

The remediation of heavy-metal-contaminated sites represents a serious environmental problem worldwide. Currently, cost- and time-intensive chemical treatments are usually performed. Bioremediation by heavy-metal-tolerant microorganisms is considered a more eco-friendly and comparatively cheap alternative. The fungus Penicillium simplicissimum KS1, isolated from the flooding water of a former uranium (U) mine in Germany, shows promising U bioremediation potential mainly through biomineralization. The adaption of P. simplicissimum KS1 to heavy-metal-contaminated sites is indicated by an increased U removal capacity of up to 550 mg U per g dry biomass, compared to the non-heavy-metal-exposed P. simplicissimum reference strain DSM 62867 (200 mg U per g dry biomass). In addition, the effect of temperature and cell viability of P. simplicissimum KS1 on U biomineralization was investigated. While viable cells at 30°C removed U mainly extracellularly via metabolism-dependent biomineralization, a decrease in temperature to 4°C or use of dead-autoclaved cells at 30°C revealed increased occurrence of passive biosorption and bioaccumulation, as confirmed by scanning transmission electron microscopy. The precipitated U species were assigned to uranyl phosphates with a structure similar to that of autunite, via cryo-time-resolved laser fluorescence spectroscopy. The major involvement of phosphates in U precipitation by P. simplicissimum KS1 was additionally supported by the observation of increased phosphatase activity for viable cells at 30°C. Furthermore, viable cells actively secreted small molecules, most likely phosphorylated amino acids, which interacted with U in the supernatant and were not detected in experiments with dead-autoclaved cells. Our study provides new insights into the influence of temperature and cell viability on U phosphate biomineralization by fungi, and furthermore highlight the potential use of P. simplicissimum KS1 particularly for U bioremediation purposes.Graphical Abstract


2016 ◽  
Vol 62 (4) ◽  
pp. 329-337 ◽  
Author(s):  
Yuan Jiang ◽  
Ruixia Hao ◽  
Shiqin Yang

In this work, we studied the natural bioaccumulation and biosorption of Pb(II) in several common edible macrofungi. The macrofungi include the following species: Lentinus edodes, Pleurotus eryngii, Flammulina velutipes, Hypsizygus marmoreus, and Agrocybe cylindracea. The present analysis of Pb(II) revealed distinct capabilities of metal accumulation among individual species. Moreover, the natural concentrations of lead did not reach a health risk level when cultivated in uncontaminated soil. In the biosorption experiment by edible macrofungi, we found that the equilibrium data of living sporocarp (P. eryngii and H. marmoreus) and the homogenate of L. edodes and F. velutipes fit the Freundlich model well. Other data samples exhibited a better fit to the Langmuir model. The edible macrofungi showed a higher lead removal capacity than did other biosorbents. Furthermore, the pseudo-second-order kinetics model exhibited the best fit to the biosorption processes. The effectiveness of edible macrofungi as biosorbents for Pb(II) was confirmed.


2020 ◽  
Vol 22 ◽  
pp. e00925 ◽  
Author(s):  
Qiaoqiao Zhou ◽  
Nan Yang ◽  
Youzhi Li ◽  
Bo Ren ◽  
Xiaohui Ding ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Ismael Acosta-Rodríguez ◽  
Juan F. Cárdenas-González ◽  
Adriana S. Rodríguez Pérez ◽  
Juana Tovar Oviedo ◽  
Víctor M. Martínez-Juárez

The objective of this work was to study the resistance and removal capacity of heavy metals by the fungusAspergillus niger. We analyzed the resistance to some heavy metals by dry weight and plate: the fungus grew in 2000 ppm of zinc, lead, and mercury, 1200 and 1000 ppm of arsenic (III) and (VI), 800 ppm of fluor and cobalt, and least in cadmium (400 ppm). With respect to their potential of removal of heavy metals, this removal was achieved for zinc (100%), mercury (83.2%), fluor (83%), cobalt (71.4%), fairly silver (48%), and copper (37%). The ideal conditions for the removal of 100 mg/L of the heavy metals were 28°C, pH between 4.0 and 5.5, 100 ppm of heavy metal, and 1 g of fungal biomass.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1574 ◽  
Author(s):  
Abdullah Alkhudhiri ◽  
Mohammed Hakami ◽  
Myrto-Panagiota Zacharof ◽  
Hosam Abu Homod ◽  
Ahmed Alsadun

Synthetic industrial wastewater samples containing mercury (Hg), arsenic (As), and lead (Pb) ions in various concentrations were prepared and treated by air gap membrane distillation (AGMD), a promising method for heavy metals removal. Three different membrane pore sizes (0.2, 0.45, and 1 μm) which are commercially available (TF200, TF450, and TF1000) were tested to assess their effectiveness in combination with various heavy metal concentrations and operating parameters (flow rate 1–5 L/min, feed temperature 40–70 °C, and pH 2–11). The results indicated that a high removal efficiency of the heavy metals was achieved by AGMD. TF200 and TF450 showed excellent membrane removal efficiency, which was above 96% for heavy metal ions in a wide range of concentrations. In addition, there was no significant influence of the pH value on the metal removal efficiency. Energy consumption was monitored at different membrane pore sizes and was found to be almost independent of membrane pore size and metal type.


2016 ◽  
Vol 7 (4) ◽  
pp. 387-419 ◽  
Author(s):  
Renu ◽  
Madhu Agarwal ◽  
K. Singh

Heavy metals are discharged into water from various industries. They can be toxic or carcinogenic in nature and can cause severe problems for humans and aquatic ecosystems. Thus, the removal of heavy metals from wastewater is a serious problem. The adsorption process is widely used for the removal of heavy metals from wastewater because of its low cost, availability and eco-friendly nature. Both commercial adsorbents and bioadsorbents are used for the removal of heavy metals from wastewater, with high removal capacity. This review article aims to compile scattered information on the different adsorbents that are used for heavy metal removal and to provide information on the commercially available and natural bioadsorbents used for removal of chromium, cadmium and copper, in particular.


Sign in / Sign up

Export Citation Format

Share Document