Review on methods used for wildlife species and individual identification

2021 ◽  
Vol 68 (1) ◽  
Author(s):  
Tinao Petso ◽  
Rodrigo S. Jamisola ◽  
Dimane Mpoeleng
PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e2900 ◽  
Author(s):  
Willem G. Coetzer ◽  
Colleen T. Downs ◽  
Mike R. Perrin ◽  
Sandi Willows-Munro

BackgroundIllegal trade in rare wildlife species is a major threat to many parrot species around the world. Wildlife forensics plays an important role in the preservation of endangered or threatened wildlife species. Identification of illegally harvested or traded animals through DNA techniques is one of the many methods used during forensic investigations. Natural populations of the South African endemic Cape Parrot (Poicephalus robustus) are negatively affected by the removal of eggs and chicks for the pet trade.MethodsIn this study, 16 microsatellite markers specifically designed for the South African endemic Cape Parrot (P. robustus) are assessed for their utility in forensic casework. Using these 16 loci, the genetic diversity of a subset of the captive Cape Parrot population was also assessed and compared to three wild Cape Parrot populations.ResultsIt was determined that the full 16 locus panel has sufficient discriminatory power to be used in parentage analyses and can be used to determine if a bird has been bred in captivity and so can be legally traded or if it has been illegally removed from the wild. In cases where birds have been removed from the wild, this study suggests that a reduced 12 locus microsatellite panel has sufficient power to assign confiscated birds to geographic population of origin.DiscussionThe level of genetic diversity observed within the captive Cape Parrot population was similar to that observed in the wild populations, which suggests that the captive population is not suffering from decreased levels of genetic diversity. The captive Cape Parrots did however have double the number of private alleles compared to that observed in the most genetically diverse wild population. This is probably due to the presence of rare alleles present in the founder population, which has not been lost due to genetic drift, as many of the individuals tested in this study are F1–F3 wild descendants. The results from this study provide a suit of markers that can be used to aid conservation and law enforcement authorities to better control legal and illegal trade of this South African endemic.


2018 ◽  
Vol 1 (2) ◽  
pp. 34-44
Author(s):  
Faris E Mohammed ◽  
Dr. Eman M ALdaidamony ◽  
Prof. A. M Raid

Individual identification process is a very significant process that resides a large portion of day by day usages. Identification process is appropriate in work place, private zones, banks …etc. Individuals are rich subject having many characteristics that can be used for recognition purpose such as finger vein, iris, face …etc. Finger vein and iris key-points are considered as one of the most talented biometric authentication techniques for its security and convenience. SIFT is new and talented technique for pattern recognition. However, some shortages exist in many related techniques, such as difficulty of feature loss, feature key extraction, and noise point introduction. In this manuscript a new technique named SIFT-based iris and SIFT-based finger vein identification with normalization and enhancement is proposed for achieving better performance. In evaluation with other SIFT-based iris or SIFT-based finger vein recognition algorithms, the suggested technique can overcome the difficulties of tremendous key-point extraction and exclude the noise points without feature loss. Experimental results demonstrate that the normalization and improvement steps are critical for SIFT-based recognition for iris and finger vein , and the proposed technique can accomplish satisfactory recognition performance. Keywords: SIFT, Iris Recognition, Finger Vein identification and Biometric Systems.   © 2018 JASET, International Scholars and Researchers Association    


EDIS ◽  
2017 ◽  
Vol 2017 (3) ◽  
Author(s):  
Shelly A. Johnson ◽  
Timm Kroeger ◽  
Josh Horn ◽  
Alison E. Adams ◽  
Damian C. Adams

Animals in Florida provide a variety of benefits to people, from recreation (fishing, hunting, or wildlife viewing) to protection of human life and property (oysters and corals provide reef structures that help protect coasts from erosion and flooding). By measuring the economic value of these benefits, we can assign a monetary value to the habitats that sustain these species and assess the value that is lost when development or other human-based activities degrade animal habitat. This 5-page fact sheet presents the results of a study that assessed the value of protecting five animal species in Florida and showed the economic value of protecting animal habitat.


2009 ◽  
Vol 31 (3) ◽  
pp. 285-289 ◽  
Author(s):  
Jing WANG ◽  
Chou-Sheng LIU ◽  
Li-Ping ZHANG ◽  
Zhi-Gang WANG ◽  
Fu-Qing YU ◽  
...  

Author(s):  
M.G.L. Mills ◽  
M.E.J. Mills

Most cheetah studies have been confined to mesic savannahs, yet much of its distribution range covers arid systems. The prime objective in this study was to examine the species’ adaptations to an arid region, to compare the results with those from other cheetah studies, especially from the Serengeti, and to analyse the data within the framework of carnivore population and behavioural ecology. The study was conducted in the Kgalagadi Transfrontier Park South Africa/Botswana, an area receiving 180–250 mm rainfall per year. Tracking spoor with the help of Bushmen trackers and continuous follows of 21 VHF radio-collared cheetahs were the main study methods used. These were supported by photographic records for individual identification, DNA studies for genetic aspects including paternity, and the use of doubly labelled water and the fitting of miniature data loggers for energetic studies. The statistical tests used to analyse the data are described.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sougata Sadhukhan ◽  
Holly Root-Gutteridge ◽  
Bilal Habib

AbstractPrevious studies have posited the use of acoustics-based surveys to monitor population size and estimate their density. However, decreasing the bias in population estimations, such as by using Capture–Mark–Recapture, requires the identification of individuals using supervised classification methods, especially for sparsely populated species like the wolf which may otherwise be counted repeatedly. The cryptic behaviour of Indian wolf (Canis lupus pallipes) poses serious challenges to survey efforts, and thus, there is no reliable estimate of their population despite a prominent role in the ecosystem. Like other wolves, Indian wolves produce howls that can be detected over distances of more than 6 km, making them ideal candidates for acoustic surveys. Here, we explore the use of a supervised classifier to identify unknown individuals. We trained a supervised Agglomerative Nesting hierarchical clustering (AGNES) model using 49 howls from five Indian wolves and achieved 98% individual identification accuracy. We tested our model’s predictive power using 20 novel howls from a further four individuals (test dataset) and resulted in 75% accuracy in classifying howls to individuals. The model can reduce bias in population estimations using Capture-Mark-Recapture and track individual wolves non-invasively by their howls. This has potential for studies of wolves’ territory use, pack composition, and reproductive behaviour. Our method can potentially be adapted for other species with individually distinctive vocalisations, representing an advanced tool for individual-level monitoring.


2021 ◽  
Author(s):  
Qiushi Wang ◽  
Yuehua Xu ◽  
Tengda Zhao ◽  
Zhilei Xu ◽  
Yong He ◽  
...  

Abstract The functional connectome is highly distinctive in adults and adolescents, underlying individual differences in cognition and behavior. However, it remains unknown whether the individual uniqueness of the functional connectome is present in neonates, who are far from mature. Here, we utilized the multiband resting-state functional magnetic resonance imaging data of 40 healthy neonates from the Developing Human Connectome Project and a split-half analysis approach to characterize the uniqueness of the functional connectome in the neonatal brain. Through functional connectome-based individual identification analysis, we found that all the neonates were correctly identified, with the most discriminative regions predominantly confined to the higher-order cortices (e.g., prefrontal and parietal regions). The connectivities with the highest contributions to individual uniqueness were primarily located between different functional systems, and the short- (0–30 mm) and middle-range (30–60 mm) connectivities were more distinctive than the long-range (>60 mm) connectivities. Interestingly, we found that functional data with a scanning length longer than 3.5 min were able to capture the individual uniqueness in the functional connectome. Our results highlight that individual uniqueness is present in the functional connectome of neonates and provide insights into the brain mechanisms underlying individual differences in cognition and behavior later in life.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1042
Author(s):  
Zhuoying Weng ◽  
Yang Yang ◽  
Xi Wang ◽  
Lina Wu ◽  
Sijie Hua ◽  
...  

Pedigree information is necessary for the maintenance of diversity for wild and captive populations. Accurate pedigree is determined by molecular marker-based parentage analysis, which may be influenced by the polymorphism and number of markers, integrity of samples, relatedness of parents, or different analysis programs. Here, we described the first development of 208 single nucleotide polymorphisms (SNPs) and 11 microsatellites for giant grouper (Epinephelus lanceolatus) taking advantage of Genotyping-by-sequencing (GBS), and compared the power of SNPs and microsatellites for parentage and relatedness analysis, based on a mixed family composed of 4 candidate females, 4 candidate males and 289 offspring. CERVUS, PAPA and COLONY were used for mutually verification. We found that SNPs had a better potential for relatedness estimation, exclusion of non-parentage and individual identification than microsatellites, and > 98% accuracy of parentage assignment could be achieved by 100 polymorphic SNPs (MAF cut-off < 0.4) or 10 polymorphic microsatellites (mean Ho = 0.821, mean PIC = 0.651). This study provides a reference for the development of molecular markers for parentage analysis taking advantage of next-generation sequencing, and contributes to the molecular breeding, fishery management and population conservation.


Sign in / Sign up

Export Citation Format

Share Document