scholarly journals Neuroblastoma and the epigenome

Author(s):  
Irfete S. Fetahu ◽  
Sabine Taschner-Mandl

AbstractNeuroblastoma (NB) is a pediatric cancer of the sympathetic nervous system and one of the most common solid tumors in infancy. Amplification of MYCN, copy number alterations, numerical and segmental chromosomal aberrations, mutations, and rearrangements on a handful of genes, such as ALK, ATRX, TP53, RAS/MAPK pathway genes, and TERT, are attributed as underlying causes that give rise to NB. However, the heterogeneous nature of the disease—along with the relative paucity of recurrent somatic mutations—reinforces the need to understand the interplay of genetic factors and epigenetic alterations in the context of NB. Epigenetic mechanisms tightly control gene expression, embryogenesis, imprinting, chromosomal stability, and tumorigenesis, thereby playing a pivotal role in physio- and pathological settings. The main epigenetic alterations include aberrant DNA methylation, disrupted patterns of posttranslational histone modifications, alterations in chromatin composition and/or architecture, and aberrant expression of non-coding RNAs. DNA methylation and demethylation are mediated by DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) proteins, respectively, while histone modifications are coordinated by histone acetyltransferases and deacetylases (HATs, HDACs), and histone methyltransferases and demethylases (HMTs, HDMs). This article focuses predominately on the crosstalk between the epigenome and NB, and the implications it has on disease diagnosis and treatment.

2020 ◽  
Vol 21 (15) ◽  
pp. 5314
Author(s):  
Pooneh Chokhachi Baradaran ◽  
Zuzana Kozovska ◽  
Alena Furdova ◽  
Bozena Smolkova

Uveal melanoma (UM), the most common intraocular malignancy in adults, is a rare subset of melanoma. Despite effective primary therapy, around 50% of patients will develop the metastatic disease. Several clinical trials have been evaluated for patients with advanced UM, though outcomes remain dismal due to the lack of efficient therapies. Epigenetic dysregulation consisting of aberrant DNA methylation, histone modifications, and small non-coding RNA expression, silencing tumor suppressor genes, or activating oncogenes, have been shown to play a significant role in UM initiation and progression. Given that there is no evidence any approach improves results so far, adopting combination therapies, incorporating a new generation of epigenetic drugs targeting these alterations, may pave the way for novel promising therapeutic options. Furthermore, the fusion of effector enzymes with nuclease-deficient Cas9 (dCas9) in clustered regularly interspaced short palindromic repeats (CRISPR) associated protein 9 (Cas9) system equips a potent tool for locus-specific erasure or establishment of DNA methylation as well as histone modifications and, therefore, transcriptional regulation of specific genes. Both, CRISPR-dCas9 potential for driver epigenetic alterations discovery, and possibilities for their targeting in UM are highlighted in this review.


Epigenomics ◽  
2021 ◽  
Author(s):  
Hamid Mostafavi Abdolmaleky ◽  
Jin-Rong Zhou ◽  
Sam Thiagalingam

During the last two decades, diverse epigenetic modifications including DNA methylation, histone modifications, RNA editing and miRNA dysregulation have been associated with psychiatric disorders. A few years ago, in a review we outlined the most common epigenetic alterations in major psychiatric disorders (e.g., aberrant DNA methylation of DTNBP1, HTR2A, RELN, MB-COMT and PPP3CC, and increased expression of miR-34a and miR-181b). Recent follow-up studies have uncovered other DNA methylation aberrations affecting several genes in mental disorders, in addition to dysregulation of many miRNAs. Here, we provide an update on new epigenetic findings and highlight potential origin of the diversity and inconsistencies, focusing on drug effects, tissue/cell specificity of epigenetic landscape and discuss shortcomings of the current diagnostic criteria in mental disorders.


2021 ◽  
Author(s):  
Khaled A. Elawdan ◽  
Sabah Farouk ◽  
Salah Araf ◽  
Hany Khalil

Abstract Background: Cancer is the second-leading cause of death worldwide, caused by several mutations in DNA within the cells including epigenetic alteration. The epigenetic changes are external modifications to the DNA that switch “on” or “off” gene expression. The present study was conducted to investigate the epigenetic modifications and its correlation with the levels of vitamin B12 and ferritin in cancer patients with hepatocellular carcinoma (HCC), breast cancer (BC), lung cancer (LC), or colon cancer (CC). Methods and Results: A total of 200 blood samples were obtained from cancer patients and healthy individuals. The relative expression of DNA methyltransferases (DNMTs), Ten-Eleven translocation (TET), and methionine synthase (MS) was evaluated in patients with the normal level of vitamin B12/ferritin and patients with the deficient levels of them. DNA methylation within the promoter regions was investigated of each indicated genes using the methylation-sensitive restriction enzyme HpaII and bisulfite PCR. Interestingly, the expression of DNMT1, DNMT3a, and DNMT3b was increased in patients with low levels of vitamin B12 and ferritin, while the expression of MS, TET1, and TET3 was significantly decreased. DNA methylation analysis in patients with deficient levels of vitamin B12/ferritin showed a methylated-cytosine within the location 318/CG and 385/CG in the promoter region of TET1 and TET3, respectively. Moreover, the bisulfite PCR assay further confirmed the methylation changes in the promoter region of TET1 and TET3 at the indicated locations. Conclusion: These data indicate that the deficiency in vitamin B12 and ferritin in cancer patients plays a key role in the epigenetic exchanges during cancer development.


Author(s):  
Arlette Rwigemera ◽  
Rhizlane El omri-Charai ◽  
Laetitia L Lecante ◽  
Geraldine Delbes

Abstract Epigenetic reprogramming during perinatal germ cell development is essential for genomic imprinting and cell differentiation; however, the actors of this key event and their dynamics are poorly understood in rats. Our study aimed to characterize the expression patterns of epigenetic modifiers and the changes in histone modifications in rat gonocytes at the time of de novo DNA methylation. Using transgenic rats expressing Green Fluorescent Protein (GFP) specifically in germ cells, we purified male gonocytes by fluorescent activated cell sorting at various stages of perinatal development and established the transcriptomic profile of 165 epigenetic regulators. Using immunofluorescence on gonad sections, we tracked six histone modifications in rat male and female perinatal germ cells over time, including methylation of histone H3 on lysines 27, 9, and 4; ubiquitination of histone H2A on lysine119; and acetylation of histone H2B on lysine 20. The results revealed the dynamics in the expression of ten-eleven translocation enzymes and DNA methyltransferases in male gonocytes at the time of de novo DNA methylation. Moreover, our transcriptomic data indicate a decrease in histone ubiquitination and methylation coinciding with the beginning of de novo DNA methylation. Decreases in H2AK119Ub and H3K27me3 were further confirmed by immunofluorescence in the male germ cells but were not consistent for all H3 methylation sites examined. Together, our data highlighted transient chromatin remodeling involving histone modifications during de novo DNA methylation. Further studies addressing how these dynamic changes in histone posttranslational modifications could guide de novo DNA methylation will help explain the complex establishment of the male germ cell epigenome.


Genes ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 369 ◽  
Author(s):  
Allison B. Norvil ◽  
Debapriya Saha ◽  
Mohd Saleem Dar ◽  
Humaira Gowher

Despite a large body of evidence supporting the role of aberrant DNA methylation in etiology of several human diseases, the fundamental mechanisms that regulate the activity of mammalian DNA methyltransferases (DNMTs) are not fully understood. Recent advances in whole genome association studies have helped identify mutations and genetic alterations of DNMTs in various diseases that have a potential to affect the biological function and activity of these enzymes. Several of these mutations are germline-transmitted and associated with a number of hereditary disorders, which are potentially caused by aberrant DNA methylation patterns in the regulatory compartments of the genome. These hereditary disorders usually cause neurological dysfunction, growth defects, and inherited cancers. Biochemical and biological characterization of DNMT variants can reveal the molecular mechanism of these enzymes and give insights on their specific functions. In this review, we introduce roles and regulation of DNA methylation and DNMTs. We discuss DNMT mutations that are associated with rare diseases, the characterized effects of these mutations on enzyme activity and provide insights on their potential effects based on the known crystal structure of these proteins.


2010 ◽  
Vol 207 (9) ◽  
pp. 1939-1950 ◽  
Author(s):  
Anne Y. Lai ◽  
Mehrnaz Fatemi ◽  
Archana Dhasarathy ◽  
Christine Malone ◽  
Steve E. Sobol ◽  
...  

Aberrant DNA methylation commonly occurs in cancer cells where it has been implicated in the epigenetic silencing of tumor suppressor genes. Additional roles for DNA methylation, such as transcriptional activation, have been predicted but have yet to be clearly demonstrated. The BCL6 oncogene is implicated in the pathogenesis of germinal center–derived B cell lymphomas. We demonstrate that the intragenic CpG islands within the first intron of the human BCL6 locus were hypermethylated in lymphoma cells that expressed high amounts of BCL6 messenger RNA (mRNA). Inhibition of DNA methyltransferases decreased BCL6 mRNA abundance, suggesting a role for these methylated CpGs in positively regulating BCL6 transcription. The enhancer-blocking transcription factor CTCF bound to this intronic region in a methylation-sensitive manner. Depletion of CTCF by short hairpin RNA in neoplastic plasma cells that do not express BCL6 resulted in up-regulation of BCL6 transcription. These data indicate that BCL6 expression is maintained during lymphomagenesis in part through DNA methylation that prevents CTCF-mediated silencing.


2019 ◽  
Vol 20 (18) ◽  
pp. 4576 ◽  
Author(s):  
Xianwen Yang ◽  
Molly Pui Man Wong ◽  
Ray Kit Ng

Acute myeloid leukemia (AML) is a heterogeneous disease that is characterized by distinct cytogenetic or genetic abnormalities. Recent discoveries in cancer epigenetics demonstrated a critical role of epigenetic dysregulation in AML pathogenesis. Unlike genetic alterations, the reversible nature of epigenetic modifications is therapeutically attractive in cancer therapy. DNA methylation is an epigenetic modification that regulates gene expression and plays a pivotal role in mammalian development including hematopoiesis. DNA methyltransferases (DNMTs) and Ten-eleven-translocation (TET) dioxygenases are responsible for the dynamics of DNA methylation. Genetic alterations of DNMTs or TETs disrupt normal hematopoiesis and subsequently result in hematological malignancies. Emerging evidence reveals that the dysregulation of DNA methylation is a key event for AML initiation and progression. Importantly, aberrant DNA methylation is regarded as a hallmark of AML, which is heralded as a powerful epigenetic marker in early diagnosis, prognostic prediction, and therapeutic decision-making. In this review, we summarize the current knowledge of DNA methylation in normal hematopoiesis and AML pathogenesis. We also discuss the clinical implications of DNA methylation and the current therapeutic strategies of targeting DNA methylation in AML therapy.


2021 ◽  
Author(s):  
Khaled A. Elawdan ◽  
Sabah Farouk ◽  
Salah Araf ◽  
Hany Khalil

Abstract Background: Cancer is the second-leading cause of death worldwide, caused by several mutations in DNA within the cells including epigenetic alteration. The epigenetic changes are external modifications to the DNA that switch “on” or “off” gene expression. The present study was conducted to investigate the epigenetic modifications and its correlation with the levels of vitamin B12 and ferritin in cancer patients with hepatocellular carcinoma (HCC), breast cancer (BC), lung cancer (LC), or colon cancer (CC). Methods and Results: A total of 200 blood samples were obtained from cancer patients and healthy individuals. The relative expression of DNA methyltransferases (DNMTs), Ten-Eleven translocation (TET), and methionine synthase (MS) was evaluated in patients with the normal level of vitamin B12/ferritin and patients with the deficient levels of them. DNA methylation within the promoter regions was investigated of each indicated genes using the methylation-sensitive restriction enzyme HpaII and bisulfite PCR. Interestingly, the expression of DNMT1, DNMT3a, and DNMT3b was increased in patients with low levels of vitamin B12 and ferritin, while the expression of MS, TET1, and TET3 was significantly decreased. DNA methylation analysis in patients with deficient levels of vitamin B12/ferritin showed a methylated-cytosine within the location 318/CG and 385/CG in the promoter region of TET1 and TET3, respectively. Moreover, the bisulfite PCR assay further confirmed the methylation changes in the promoter region of TET1 and TET3 at the indicated locations. Conclusion: These data indicate that the deficiency in vitamin B12 and ferritin in cancer patients plays a key role in the epigenetic exchanges during cancer development.


Sign in / Sign up

Export Citation Format

Share Document