scholarly journals Interaction of pig manure-derived dissolved organic matter with soil affects sorption of sulfadiazine, caffeine and atenolol pharmaceuticals

Author(s):  
Wei Zhang ◽  
Xiangyu Tang ◽  
Sören Thiele-Bruhn

AbstractPharmaceutically active compounds (PhACs) released into the environment have an adverse impact on the soil and water ecosystem as well as human health. Sorption of PhACs by soils and its potential modification through introduced DOM in the applied animal manure or treated wastewater (TWW) determines the mobility and environmental relevance of PhACs. Sulfadiazine, caffeine and atenolol were selected as target PhACs to investigate their sorption behaviors by five selected arable soils in the absence and presence of pig manure DOM. Sulfadiazine was least sorbed, followed by caffeine and atenolol according to the Freundlich sorption isotherm fit (soil average Kf [μg(1−n) mLn g−1] 4.07, 9.06, 18.92, respectively). The addition of manure DOM (31.34 mg C L−1) decreased the sorption of sulfadiazine and especially of caffeine and atenolol (average Kf 3.04, 6.17, 5.79, respectively). Freundlich sorption isotherms of the PhACs became more nonlinear in the presence of manure DOM (Freundlich exponent n changed from 0.74–1.40 to 0.62–1.12), implying more heterogeneous sorption of PhACs in soil–DOM binary systems. Sorption competition of DOM molecules with sulfadiazine and caffeine mostly contributed to their decreased soil sorption when DOM was present. In contrast, the formation of DOM–atenolol associates in the solution phase caused the largely decreased soil sorption of atenolol in the presence of DOM. It is suggested that DOM concentration (e.g., ≥ 60 mg C L−1) and its interaction with PhACs should be taken into consideration when assessing the environmental impact of land application of animal manure or irrigation with TWW.

2019 ◽  
Vol 2 (2) ◽  
pp. 21
Author(s):  
Lindawati Lindawati

Reduction of food rations and shortages is one of the impacts of the increasing human population. Food sector industries then try to cope with the fast growing number of customers. Agribusiness sector gains its popularity in these recent years, including pig farm. The increase trend of animal farming industry is likely to bring increasing pollution problem unless effective treatment methods are used. The main problems related to the pig farm include odor nuisance and pig manure disposal. The existing land application of piggery wastewater is the traditional way to discharge the wastewater. This may yield in land and water contamination, due to the accumulation of unused nutrients by crop plant. A case study of a large commercial pig farm from Australia is proposed to apply in smaller scale in Indonesia. Operational strategies for the small-scale SBR (Sequencing Batch Reactor) treating piggery effluent were developed based on lab-scale experiments. Due to SBR characteristics, which are money-saving and space-saving, it is very suitable to be applied in urban area. An economic evaluation was made of various process options. The cost estimation showed that SBR is a cost effective process, allowing operational batches to be adjusted to reduce unnecessary aeration cost. A reduction in the aeration cost was achieved by shortening the batch time from 24-h to 8-h. A comparison of three different SBR options showed that smaller size reactors could be more flexible and cost effective when compared with the larger ones.


Author(s):  
Luisa Ugolini ◽  
Donatella Scarafile ◽  
Roberto Matteo ◽  
Eleonora Pagnotta ◽  
Lorena Malaguti ◽  
...  

AbstractAnimal manure application to soils is considered to be one of the main cause of antibiotic and bacterial pathogen spread in the environment. Pig livestock, which is the source of one of the most used fertilizer for cultivated land, is also a hotspot for antibiotics and antibiotic-resistant bacteria. Besides harsh chemical and physical sanitization treatments for the abatement of antibiotics and bacterial load in livestock waste, more sustainable and environmentally friendly strategies need to be considered. In this context, the use of natural substances which are proved useful for pest and disease control is currently under exploration for their role in the reduction of bacterial pathogen population. Among these, plants and derived products from the Brassicaceae family, characterized by the presence of a defensive glucosinolate-myrosinase enzymatic system, have been successfully exploited for years in agriculture using the so-called biofumigation technique against crop diseases. Although the application of biofumigation to suppress a range of soil borne pests has been well documented, no studies have been examined to reduce bacterial population in animal waste. In the present study, the release and the antibacterial activity of bioactive compounds deriving from different Brassicaceae defatted seed meals against pathogens and bacterial population in pig manure is addressed. Rapistrum rugosum and Brassica nigra defatted seed meals were found to be the most active products against tested pathogens and able to significantly reduce the bacterial load in the manure.


2020 ◽  
Vol 10 (3) ◽  
pp. 990 ◽  
Author(s):  
Chrysanthos Maraveas

This review paper investigated the durability and corrosion of materials used in the construction of agricultural buildings. Even though concrete and metal were the materials of choice in the construction of farm structures, they are susceptible to corrosion and environmental degradation. Acid attacks result in the oxidation of metals and mass losses and reduced compressive strength of the metal structures. Concrete structures are degraded in high humidity environments, such as lagoons, agricultural effluents, and animal manure. Poultry, cow, and pig manure contain variable quantities of corrosion-inducing chemicals, such as sulfates, nitrates, chlorides, hydrogen sulfide, and ammonia. However, the degradation of concrete structures can be mitigated by the utilization of modified concrete containing sulfur, fly ash, silica fume, and nanoparticles such as silica. Concrete structures made of fiber-reinforced polymers are less prone to corrosion and are more durable. The design for durability has also emerged as a viable option for optimizing the service life of agricultural buildings by adhering to the exposure limits.


2008 ◽  
Vol 48 (2) ◽  
pp. 96 ◽  
Author(s):  
W. Berg ◽  
A. Model

Methane is the most prevalent greenhouse gas from animal agriculture. The main source of methane emission is ruminant metabolism; however, animal manure also makes a significant contribution. Manure management can offer possibilities for emission reduction. The influence of sulfur, in the form of gypsum (CaSO4), on methane emission from liquid pig manure during storage was determined at the laboratory scale. Manure was stored in open vessels (75 kg/vessel) over a period of 14 weeks. Three different dosages of gypsum, 1, 2 and 3 kg per vessel, were added at the beginning of the experimental period. There was a linear correlation between methane concentration and amount of added gypsum. Adding 4% gypsum to pig slurry by mass (3 kg) almost halved methane emission. Nearly all nitrous oxide emissions were eliminated by the gypsum treatments.


2021 ◽  
Vol 137 ◽  
pp. 110476
Author(s):  
Yizhen Zhang ◽  
Yan Jiang ◽  
Shun Wang ◽  
Zhongzhong Wang ◽  
Yanchen Liu ◽  
...  

2010 ◽  
Vol 62 (6) ◽  
pp. 1335-1345 ◽  
Author(s):  
U. Khan ◽  
J. A. Nicell

Once separated, the use of urine as fertilizer is a particular attractive proposition and can significantly mitigate the release of nutrients and pharmaceutically active compounds (PhACs) to the environment. In the current study, a simple methodological framework is proposed for assessing risks that are posed by the land application of urine, which contains PhACs, in terms of 6 selected environmental and human-health endpoints. In total, 25 commonly used PhACs were conservatively assessed using the proposed methodology and results indicated that 14 of them may pose a risk with respect to either eco-toxicological or human-health endpoints. The receiving terrestrial environment was identified as the most susceptible of the eco-toxicological endpoints and hazard to human-health was most significant through food-chain transfer. The results highlight the need to consider the potential impacts associated with pharmaceuticals and the need to pre-treat urine to address the presence of problematic PhACs before it is applied on land.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Ricardo de Oliveira Munhoz ◽  
Ronaldo Severiano Berton ◽  
Otávio Antonio de Camargo

Land application of biosolids (SS) can cause a buildup of phosphorus (P) in the top soil. The changes in the soil P characteristics may be assessed by the sorption isotherm and the sequential fractionation techniques. Samples of Haplorthox were collected from a field experiment where maize was cultivated for two years, after two applications of SS originated from two cities of São Paulo State, Brazil. SS applications added a total of 125, 250, 500, 1000 and 2000 kg ha−1of P in the area. To perform the sorption isotherms and obtain P maximum sorption capacity (Qmax) and the binding energy, soil samples were submitted to increasing P concentration solutions until equilibrium was reached. Sequential fractionation was done by a sequential extraction with CaCl2, NaHCO3, NaOH, HCl, and HNO3+ HClO4(residual). Addition of biosolids from both cities to the soil decreasedQmaxand the binding energy obtained by the Langmuir equation. SS additions changed the P fractions distribution in the soil by increasing the labile fractions (P-CaCl2and P-NaHCO3) and the moderately labile fraction (P-NaOH) by 11.2% and 20.3%, respectively, in detriment of the most resistant P fraction.


2021 ◽  
Vol 25 (2) ◽  
pp. 66-74
Author(s):  
Benedict. O. Unagwu ◽  
Roseline. U. Ayogu ◽  
Vivian.O. Osadebe

The study investigated the effects of animal manures (cow manure, CoM; chicken droppings, CkD; and pig manure, PiM) applied at 15 t ha-1 equivalent rate on the soil and growth performance of okra grown in a degraded ultisol. The treatments (CoM; CoM; PiM and Control unamended) were laid out in a completely randomized design and replicated three times. Animal manure application had significant effects on soil properties. Soilorganic matter increased by over 9% in the amended treatment relative to the control treatment. Except for N, increases in P (circa 14-70%)and K (circa 15-46%) nutrients were higher for CkD treatment than in other  treatments. Generally, the amended treatments maintained a significantly higher (p ≤0.05) plant leave number, stem girth, plant height, okra pod length and yields when compared with the Control treatment. The results indicated that application of animal manure enhanced okra growth performance. The findings suggest that animal manure application can potentially increase okra yield when grown in a degraded soil. It is recommended that farmers use ample (15 t ha-1) ) quantity of animal manures to increase their crop yields, which invariably will enhance their income. Keywords: Soil fertility, organic fertilizers okra growth, okra yield response, farmers okra yeild.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1941
Author(s):  
Iria Regueiro ◽  
Peter Siebert ◽  
Jingna Liu ◽  
Dorette Müller-Stöver ◽  
Lars Stoumann Jensen

There is an urgent need for better management practices regarding livestock farm nutrient imbalances and for finding alternatives to the actual use of mineral fertilizers. Acidification of animal manure is a mitigation practice used to reduce ammonia emissions to the atmospheric environment during manure storage and land application. Acidification modifies manure physicochemical characteristics, among which soluble N and P significantly increase. The main objective of this study was to investigate if acidification and the addition of a nitrification inhibitor to manure and placement of the treated manure close to the seed can stimulate maize growth by enhancing nutrient availability, specially P and consequently plant P uptake, at early development stages without the use of mineral N and P as a starter fertilizer. Raw dairy slurry and solid fractions from dairy slurry and digestate from a biogas plant were acidified to pH 5.5 and applied with or without a nitrification inhibitor (DMPP, 3,4-dimethyl pyrazole phosphate) to maize in a pot experiment, where biomass productivity, nutrient uptake and soil P availability were examined. Acidification increased the water-extractable P fraction of all slurry and digestate organic residues (by 20–61% of total P) and consequently plant P uptake from solid fractions of both slurry and digestate compared to the untreated products (by 47–49%). However, higher plant biomass from acidification alone was only achieved for the slurry solid fraction, while the combination of acidification and DMPP also increased plant biomass in the digestate solids treatment (by 49%). We therefore conclude that the combination of acidification and a nitrification inhibitor can increase the starter fertilizer value of slurry and digestate products sufficiently to make them suitable as a maize starter fertilizer.


Sign in / Sign up

Export Citation Format

Share Document