scholarly journals An Abstract Theory of Physical Measurements

2021 ◽  
Vol 51 (6) ◽  
Author(s):  
Pedro Resende
Author(s):  
J.P. Fallon ◽  
P.J. Gregory ◽  
C.J. Taylor

Quantitative image analysis systems have been used for several years in research and quality control applications in various fields including metallurgy and medicine. The technique has been applied as an extension of subjective microscopy to problems requiring quantitative results and which are amenable to automatic methods of interpretation.Feature extraction. In the most general sense, a feature can be defined as a portion of the image which differs in some consistent way from the background. A feature may be characterized by the density difference between itself and the background, by an edge gradient, or by the spatial frequency content (texture) within its boundaries. The task of feature extraction includes recognition of features and encoding of the associated information for quantitative analysis.Quantitative Analysis. Quantitative analysis is the determination of one or more physical measurements of each feature. These measurements may be straightforward ones such as area, length, or perimeter, or more complex stereological measurements such as convex perimeter or Feret's diameter.


Author(s):  
S. S. Breese ◽  
H. L. Bachrach

Models for the structure of foot-and-mouth disease virus (FMDV) have been proposed from chemical and physical measurements (Brown, et al., 1970; Talbot and Brown, 1972; Strohmaier and Adam, 1976) and from rotational image-enhancement electron microscopy (Breese, et al., 1965). In this report we examine the surface structure of FMDV particles by high resolution electron microscopy and compare it with that of particles in which the outermost capsid protein VP3 (ca. 30, 000 daltons) has been split into smaller segments, two of which VP3a and VP3b have molecular weights of about 15, 000 daltons (Bachrach, et al., 1975).Highly purified and concentrated type A12, strain 119 FMDV (5 mg/ml) was prepared as previously described (Bachrach, et al., 1964) and stored at 4°C in 0. 2 M KC1-0. 5 M potassium phosphate buffer at pH 7. 5. For electron microscopy, 1. 0 ml samples of purified virus and trypsin-treated virus were dialyzed at 4°C against 0. 2 M NH4OAC at pH 7. 3, deposited onto carbonized formvar-coated copper screens and stained with phosphotungstic acid, pH 7. 3.


Author(s):  
J. Edie

In TEM image formation, the observed contrast variations within thin sections result from differential electron scattering within microregions of varying mass thickness. It is possible to utilize these electron scattering properties to obtain objective information regarding various specimen parameters (1, 2, 3).A pragmatic, empirical approach is described which enables a microscopist to perform physical measurements of thickness of thin sections and estimates of local mass, volume, density and, possibly, molecular configurations within thin sections directly in the microscope. A Faraday cage monitors the transmitted electron beam and permits measurements of electron beam intensities.


Author(s):  
S. P. Sapers ◽  
R. Clark ◽  
P. Somerville

OCLI is a leading manufacturer of thin films for optical and thermal control applications. The determination of thin film and substrate topography can be a powerful way to obtain information for deposition process design and control, and about the final thin film device properties. At OCLI we use a scanning probe microscope (SPM) in the analytical lab to obtain qualitative and quantitative data about thin film and substrate surfaces for applications in production and research and development. This manufacturing environment requires a rapid response, and a large degree of flexibility, which poses special challenges for this emerging technology. The types of information the SPM provides can be broken into three categories:(1)Imaging of surface topography for visualization purposes, especially for samples that are not SEM compatible due to size or material constraints;(2)Examination of sample surface features to make physical measurements such as surface roughness, lateral feature spacing, grain size, and surface area;(3)Determination of physical properties such as surface compliance, i.e. “hardness”, surface frictional forces, surface electrical properties.


1997 ◽  
Vol 36 (8-9) ◽  
pp. 223-228
Author(s):  
A. Petruck ◽  
F. Sperling

The control strategy of a combined sewer system incorporating three stormwater storage tanks with overflows presented here attempts to consider all aspects of acute CSO effects. These are the hydraulic and the composition components as well as the time factor. The result is an integrated approach, which is not based on the classic emission view (i.e. reduction of volume), but on pollution criteria (i.e. possible harm to the biotic community). The aim is to reduce the exceeding of critical peak values of the CSO components at critical time intervals. Control decisions will be based on continuous measurements in the sewer system and in the receiving stream. Furthermore the measurements are carried out to determine the effects (both hydraulic and chemical) of particular CSO discharges in order to evolve the critical values for the project area. The chemical and physical measurements are accompanied by a biological monitoring programme. Macroinvertebrates are sampled upstream and downstream of outfalls and at a reference site. This allows the evaluation of the control measures on an ecological basis, and thus an assessment of the ecological potential of radar-aided real-time control of the combined sewer systems.


1972 ◽  
Vol 27 (7) ◽  
pp. 759-763 ◽  
Author(s):  
M. W. G. De Bolster ◽  
W. L. Groeneveld

A number of new solvates and adducts containing bisphenyldimethylaminophosphine oxide is reported. The solvates have the general formula M[(C6H5)2P(O)N(CH3)2]42+(anion-)2, in which M = Mg, Ca, Mn, Fe, Co, Ni, Cu, Zn and Cd, and the anions are ClO4- and BF4-. The adducts have the general formula M[(C6H5)2P(O)N(CH3)2]2Cl2, where M stands for the same series of metals.The compounds are characterized and identified by chemical analyses and physical measurements.Ligand-field and vibrational spectra have been investigated; values for the ligand-field parameters are reported. It is concluded that coordination takes place via the oxygen atom of the ligand.X-ray powder patterns were used in combination with ligand-field spectra to deduce the coordination around the metal ions.The interesting behaviour of the nickel (II) chloride adduct upon heating is discussed and it is shown that both a square pyramidal and a tetrahedral modification exists.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1398
Author(s):  
Natalia Kolkovska ◽  
Milena Dimova ◽  
Nikolai Kutev

We consider the orbital stability of solitary waves to the double dispersion equation utt−uxx+h1uxxxx−h2uttxx+f(u)xx=0,h1>0,h2>0 with combined power-type nonlinearity f(u)=a|u|pu+b|u|2pu,p>0,a∈R,b∈R,b≠0. The stability of solitary waves with velocity c, c2<1 is proved by means of the Grillakis, Shatah, and Strauss abstract theory and the convexity of the function d(c), related to some conservation laws. We derive explicit analytical formulas for the function d(c) and its second derivative for quadratic-cubic nonlinearity f(u)=au2+bu3 and parameters b>0, c2∈0,min1,h1h2. As a consequence, the orbital stability of solitary waves is analyzed depending on the parameters of the problem. Well-known results are generalized in the case of a single cubic nonlinearity f(u)=bu3.


2021 ◽  
Vol 135 (2) ◽  
pp. 104-109
Author(s):  
R Tjahjono ◽  
N Singh

AbstractBackgroundThe mechanism of nasal airflow sensation is poorly understood. This study aimed to examine the role of nasal mucosal temperature change in the subjective perception of nasal patency and the methods by which it can be quantified.MethodMedline and PubMed database searches were performed to retrieve literature relevant to the topic.ResultsThe primary mechanism producing the sensation of nasal patency is thought to be the activation of transient receptor potential melastatin family member 8 (‘TRPM8’), a thermoreceptor that is activated by nasal mucosal cooling. Computational fluid dynamics studies have demonstrated that increased airflow and heat flux are correlated with better patient-reported outcome measure scores. Similarly, physical measurements of the nasal cavity using temperature probes have shown a correlation between lower nasal mucosal temperatures and better patient-reported outcome measure scores.ConclusionNasal mucosal temperature change may be correlated with the perception of improved nasal patency. Future research should quantify the impact of mucosal cooling on the perception of nasal airway obstruction.


2021 ◽  
Author(s):  
Tim Binz

AbstractWe consider the Dirichlet-to-Neumann operator associated to a strictly elliptic operator on the space $$\mathrm {C}(\partial M)$$ C ( ∂ M ) of continuous functions on the boundary $$\partial M$$ ∂ M of a compact manifold $$\overline{M}$$ M ¯ with boundary. We prove that it generates an analytic semigroup of angle $$\frac{\pi }{2}$$ π 2 , generalizing and improving a result of Escher with a new proof. Combined with the abstract theory of operators with Wentzell boundary conditions developed by Engel and the author, this yields that the corresponding strictly elliptic operator with Wentzell boundary conditions generates a compact and analytic semigroups of angle $$\frac{\pi }{2}$$ π 2 on the space $$\mathrm {C}(\overline{M})$$ C ( M ¯ ) .


Sign in / Sign up

Export Citation Format

Share Document