scholarly journals Beam network model for fracture of materials with hierarchical microstructure

2021 ◽  
Vol 227 (2) ◽  
pp. 243-257
Author(s):  
Seyyed Ahmad Hosseini ◽  
Paolo Moretti ◽  
Dimitrios Konstantinidis ◽  
Michael Zaiser

AbstractWe introduce a beam network model for hierarchically patterned materials. In these materials, load-parallel gaps intercept stress transmission in the load perpendicular direction in such a manner that damage is confined within hierarchically nested, load-carrying ‘modules’. We describe the morphological characteristics of such materials in terms of deterministically constructed, hierarchical beam network (DHBN) models and randomized variants thereof. We then use these models to analyse the process of damage accumulation (characterized by the locations and timings of beam breakages prior to global failures, and the concomitant avalanche statistics) and of global failure. We demonstrate that, irrespective of the degree of local disorder, failure of hierarchically (micro)structured materials is characterized by diffuse local damage nucleation which ultimately percolates on the network, but never by stress-driven propagation of a critical crack. Failure of non hierarchical reference networks, on the other hand, is characterized by the sequence of damage nucleation, crack formation and crack propagation. These differences are apparent at low and intermediate degrees of material disorder but disappear in very strongly disordered materials where the local failure strengths exhibit extreme scatter. We furthermore demonstrate that, independent of material disorder, the different modes of failure lead to significant differences in fracture surface morphology.

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 229
Author(s):  
Siva Avudaiappan ◽  
Erick I. Saavedra Flores ◽  
Gerardo Araya-Letelier ◽  
Walter Jonathan Thomas ◽  
Sudharshan N. Raman ◽  
...  

An experimental investigation is performed on various cold-formed profiled sheets to study the connection behavior of composite deck slab actions using bolted shear connectors. Various profiles like dovetailed (or) re-entrant profiles, rectangular profiles and trapezoidal profiles are used in the present investigation. This experimental investigation deals with the evaluation of various parameters such as the ultimate load carrying capacity versus deflection, load versus slip, ductility ratio, strain energy and modes of failure in composite slab specimens with varying profiles. From the test results the performance of dovetailed profiled composite slabs’ resistance is significantly higher than the other two profiled composite deck slabs.


2019 ◽  
Vol 13 (4) ◽  
pp. 305-310
Author(s):  
Mina Biria ◽  
Sajedeh Namaei Ghasemi ◽  
Seyedeh Mahsa Sheikh-Al-Eslamian ◽  
Narges Panahandeh

Background. This in vitro study aimed to evaluate the microshear bond strength (μSBS), microhardness and morphological characteristics of primary enamel after treating with sodium fluoride (NaF) and acidulated phosphate fluoride (APF). Methods. Forty-eight primary canines were cut into mesial and distal sections and assigned to five groups randomly: group 1 (immersed in saliva as a control), group 2 (treated with NAF and immersed in saliva for 30 minutes), group 3 (treated with APF and immersed in saliva for 30 minutes), group 4 (treated with NAF and immersed in saliva for 10 days), and group 5 (treated with APF and immersed in saliva for 10 days). Composite resin (Filtek Z250) was bonded on the specimens (n=15) for measuring the μSBS. After storage in 37°C artificial saliva for 24 hours, µSBS and Vickers hardness tests (10 readings) were performed. The data were analyzed using one-way ANOVA and Kolmogorov-Smirnov, Levene’s and Tukey HSD tests (P<0.05). Morphological analysis of enamel and modes of failure were carried out under a scanning electron microscope (SEM) on two remaining specimens. Results. Significant differences in μSBS were only noted between groups 2 and 4 (P=0.024). Group 3 showed a significant decrease in hardness after storage in artificial saliva (P<0.001), with a significantly lower hardness than the other groups (P<0.001). The SEM observations showed irregular particles in groups 3 and 5; uniform, smooth and thin coats were seen in groups 2 and 4. Conclusion. Fluoride therapy with NaF and APF gels prior to restorative treatments had no adverse effects on the microshear bond strength.


Author(s):  
Abhinay I. Deshmukh

The Bubble Deck technology developed in Europe makes use of high-density polyethylene hollow spheres to replace the ineffective concrete in the centre of the slab, thus decreasing the dead weight and increasing the efficiency of the floor. Concrete is good in compression and hence is more useful in the compression region than in the tension region. The reduction in concrete can be done by replacing the tension zone concrete. Keeping the same idea in mind, an attempt has been made to find out the effectiveness of plastic bubbles by replacing concrete in the tension zone of Ordinary Portland Cement Concrete (OPCC) and Geopolymer Concrete (GPC) beam. Geopolymer Concrete does not form calcium- silicate-hydrates (CSHs) for matrix formation and strength like OPCC but utilizes the polycondensation of silica and alumina precursors to attain structural strength. In this project, M25 concrete mix is used to prepare both OPCC and GPC beams. The trial mix is tested for compressive strength. Flexure test is done is done for 28 days of curing of the beams. This paper presents the results of the experimental investigations carried out to determine and to compare the flexural behaviour of geopolymer concrete (GPC) beams with conventional concrete beams of same grade. The beams were tested under two point monotonic loading. Performance aspects such as load carrying capacity, first crack load, ultimate load, load-deflection behaviour, moment-curvature behaviour, crack width, crack spacing and the modes of failure of both types of beams were studied. The test results showed that the geopolymer concrete exhibits better performance compared to conventional concrete of same grade.


2011 ◽  
Vol 199-200 ◽  
pp. 386-391 ◽  
Author(s):  
Ben Wang ◽  
Lin Hua

Influence of alignment errors on the meshing of involute spiral bevel gears using FEM is investigated in this paper. 3D geometrical models of involute spiral bevel gear drive are computationally designed and the reliable non-linear finite element contact models are also developed. Furthermore, based on the valid 3D FE models, simulations of meshing of loaded spiral bevel gears with four types of alignment errors are performed. The influence of four types of alignment errors on contact stress, transmission error and shift of path of contact has been discussed in detail. The results demonstrate that the alignment errors have different degrees of adverse effects on the load-carrying capacity and the smoothness of transmission. Therefore, the study provides useful reference for the modification design and the assembling of spiral bevel gears in practice.


Author(s):  
Ming Cai Xu ◽  
C. Guedes Soares

The results of five tests on narrow stiffened panels under axial compression until collapse and beyond are presented to investigate the collapse behaviors of stiffened panels. Tension tests were used to evaluate the material properties of the stiffened panels. The tests were made on panels with two half bays plus one full bay in the longitudinal direction. Initial loading cycles were used to eliminate the residual stresses of the stiffener panels. The strain gauges were set on the plates and the stiffeners to record the strain histories. The displacement load relationship was established. The collapse behavior, modes of failure and load-carrying capacity of the stiffened panels are investigated with the experiment.


Author(s):  
Mingcai Xu ◽  
C. Guedes Soares

The results of four tests on narrow stiffened panels under axial compression until collapse and beyond are presented to investigate the ultimate strength of stiffened panels. Tension tests are used to evaluate the material properties of the stiffened panels. The tests are made on panels with two half bays plus one full bay in the longitudinal direction. Initial loading cycles were used to relief the residual stresses of the stiffener panels. The strain gauges are set on the plates and stiffeners to record the distribution of strain. The displacement load relationship is established. The ultimate strength behavior, modes of failure and load-carrying capacity of the stiffened panels are investigated with the experiment.


2020 ◽  
Vol 36 (2) ◽  
pp. 255-264
Author(s):  
F. A. Akçay

ABSTRACTFracture of materials at the microscopic level involves a characteristic length related to microstructure. However, a clear structure-property relationship is still absent in metallic glasses. Therefore, a physics-based expression is derived for the characteristic length (relevant to brittle fracture) in metallic glasses (MGs) in order to link the microscopic material features controlling the fracture process to the macroscopic material parameters. The derived characteristic length is associated to micro/nano structural fracture patterns, critical crack tip opening displacement as well as fracture toughness. Characteristic lengths of various metallic glasses are determined using the proposed expression and compared to the experimental results. Theoretical results are in very good agreement with the experimental results of various metallic glasses. Furthermore, the contribution of characteristic length as well as macroscopic material parameters such as Poisson’s ratio, yield strength, and Young’s modulus on fracture toughness (and fracture energy) is investigated and compared to the experimental results.


Foundations are structural elements that transmit loads from structures to the underlying soil. The choice of the appropriate type of foundation is governed by some important factors such as the nature of the structure, the loads exerted by the structure, the subsoil characteristics, and the allotted cost of foundations. The primary design concerns of foundations are settlement and bearing capacity. The design must also take into consideration the requirements of safety, dependability, serviceability, functional utility, and economy. The chapter considers the modes of failure and several methods of determining the ultimate bearing capacity of foundations. The procedure and considerations in the design of shallow foundation are discussed. The chapter examines the types, situations calling for the use, advantages and disadvantages, load-carrying capacity, and design of deep foundations. The efficiency of the group of deep foundations is discussed. The group capacity can be determined by the use of empirical formulas and by the rational/equivalent method. Negative skin friction, its causes, capacity, and ways of reducing its effect are considered.


2015 ◽  
Vol 3 (2) ◽  
pp. 255
Author(s):  
M. Adil Dar ◽  
Deepankar K. Ashish ◽  
A. R. Dar

<p>In today’s world, the construction industry both structural and non-structural elements are fabricated from thin gauges of steel sheets. These thin walled sections are being used as columns, beams, joists, studs, floor decking, built-up sections and other components for lightly loaded structures. Unlike hot rolled sections, the design of Cold-Formed Steel (CFS) section for beam is predominantly controlled by various buckling modes of failure, thereby drastically reducing their load carrying capacity. Hence there is an urgent need in the CFS industry to look beyond the conventional CFS beam sections and investigate newly proposed innovative CFS beam sections, which seem to prove structurally much more efficient. Prior to any experimental investigation of innovative beam sections, there is a need to carry out theoretical design using some of the most appropriate available methods applicable to the case under consideration. This paper focuses on such theoretical designs for various innovative sections using available analytical design tools together with appropriate codal guidelines.</p>


Sign in / Sign up

Export Citation Format

Share Document