Assessment of the utility of the tomato fruit-specific E8 promoter for driving vaccine antigen expression

Genetica ◽  
2007 ◽  
Vol 133 (2) ◽  
pp. 207-214 ◽  
Author(s):  
Zhu-Mei He ◽  
Xiao-Ling Jiang ◽  
Yu Qi ◽  
Di-Qing Luo
2008 ◽  
Vol 15 (4) ◽  
pp. 691-696 ◽  
Author(s):  
Ralf Geiben-Lynn ◽  
John R. Greenland ◽  
Kwesi Frimpong-Boateng ◽  
Norman L. Letvin

ABSTRACT While a new generation of vaccine vectors has been developed for eliciting cellular immune responses, little is known about the optimal routes for their administration or about the ramifications of the kinetics of in vivo vaccine antigen expression for immunogenicity. We evaluated the kinetics of vaccine antigen expression by real-time in vivo photon imaging and showed dramatic differences in these kinetics using different vectors and different routes of administration. Further, using a gamma interferon enzyme-linked immunospot assay to measure T-lymphocyte immune responses, we observed an association between the kinetics of vaccine antigen expression in vivo and the magnitude of vaccine-elicited memory T-lymphocyte responses. These results highlight the utility of the real-time in vivo photon-imaging technology in evaluating novel immunization strategies and suggest an association between the kinetics of vaccine antigen clearance and the magnitude of vaccine-elicited T-lymphocyte memory immune responses.


2013 ◽  
Vol 690-693 ◽  
pp. 1314-1317
Author(s):  
Xiang Li Song ◽  
Zhi Hui Wu ◽  
Xi Zhang ◽  
Meng Xi Lu ◽  
Bei Guo

In order to transcription and expression an exogenous gene just in transgenic strawberry fruit, the gene encoding tomato fruit-specific E8 promoter was cloned. We constructed plant expression vector with E8 promoter replace the CaMV35S of pBI121 that used for transformation of strawberry. Recombination plasmid was identified by PCR, restriction enzymes digestion and sequencing analysis, and transfered into the agrobacterium EHA105 strain. At the same time, the agrobacterium EHA105, transformation and no transformation tissue of strawberry used as the experiment materials to study the expression of reporter genegusAby the histochemical staining method. The results show that agrobacterium which containsgusAgene and strawberry organization of transformation can be dyed blue, others were not stain. So in testing the transgenic plants by agroinfiltration transient expression system can reduce or avoid false positive appearance.


2003 ◽  
Author(s):  
Michael Friedmann ◽  
Charles J. Arntzen ◽  
Hugh S. Mason

The broad objective of the project was to develop a feasible approach to combat diarrheal disease caused by ETEC through the development of a low-cost oral immunogen in tomato fruit, expressed in the context of a prototype tomato that would answer the shortcomings of plant oral vaccines, especially in terms of produce handling and control of gene escape. Specifically, the goals for Boyce Thompson Institute (BTI) on this project were to develop transgenic tomato lines that express the enterotoxigenic E. coli (ETEC) heat-labile enterotoxin (LT) subunits A and/or B for use in oral edible vaccines, and to optimize expression and assembly of these antigens in tomato fruits.LT-B is a useful vaccine antigen against ETEC disease, since antibodies against LT-B can prevent binding and delivery of the holotoxinLT. Mutant forms of the toxic LT-A subunit that have reduced toxicity can be co-expressed and assembled with LT-Bpentamers to form mutant LT (mLT) complexes that could be used as mucosaladjuvants for other oral vaccines. Work on the project is continuing at Arizona State University, after Dr. Mason moved there in August 2002. A number of approaches were taken to ensure the expression of both subunits and bring about their assembly inside the transgenic fruits. Initially, expression was driven by the fruit-specific E-8 promoter for LT-B and the constitutive CaMV 35S promoter for LT-A(K63). While LT-B accumulated up to 7 µg per gram ripe fruit, assembled LT-K63 was only 1 µg per gram. Since promoter activities for the two genes likely differed in cell type and developmental stage specificity, the ratios of A and B subunits was not optimal for efficient assembly in all cells. In order to maximize the chance of assembly of mLT in fruit, we focused on constructs in which both genes are driven by the same promoter. These included co-expression plasmids using the 35S promoter for both, while switching to attenuated mLTs (LT-R72 and LT-G192) that have shown greater potential for oral adjuvanticity than the initial LT-K63, and thus are better candidates for a plant-derived adjuvant. Other, more novel approaches were then attempted, including several new vectors using the tomato fruit-specific E8 promoter driving expression of both LT-B and mutant LT-A, as well as a dicistronic construct for co-expression of both LT-B and mutant LT-A genes from a single promoter, and a geminivirusreplicon construct. We describe in the Appendix the results obtained in transgenic tomato lines transformed with these constructs. Overall, each contributed to enhanced expression levels, but the assembly itself of the holotoxin to high levels was not observed in the fruit tissues.  The Israeli lab’s specific objective was to develop transgenic tomato lines expressing the LTholotoxin antigen bearing attributes to prevent gene escape (male sterility and orange fruit color) and to improve the dissemination of the oral vaccine (long shelf-life tomato cherry fruit or tomato processing background). Breeding lines bearing a number of attributes to prevent gene escape were developed by combining material and backcrossing either to a tomato cherry background, or two different processing backgrounds. Concomitantly, (these lines can be utilized for the creation of any future oral vaccine or other therapeutic-expressing tomato, either by crosses or transformation), the lines were crossed to the holotoxin-expressing tomatoes received from the United States, and this transgenic material was also incorporated into the backcrossing programs. To date, we have finalized the preparation of the cherry tomato material, both non-transgenic (bearing all the desired attributes), and transgenic, expressing the holotoxin. The level of expression of LT-B in the cherry fruits was comparable to the original transgenic tomatoes. Since it was not higher, this would necessitate the consumption of more fruits to reach a desired dose. A final backcross has been made for both the non-transgenic and the transgenic material in the processing lines. Auxin sprays resulted in high percentages of fruit set, but the processing genotypes gave many puffed fruits.   


Blood ◽  
2008 ◽  
Vol 112 (12) ◽  
pp. 4585-4590 ◽  
Author(s):  
Ralf Geiben-Lynn ◽  
John R. Greenland ◽  
Kwesi Frimpong-Boateng ◽  
Nico van Rooijen ◽  
Avi-Hai Hovav ◽  
...  

Abstract There is evidence that the limited immunogenicity of plasmid DNA vaccines is the result, at least in part, of the rapid clearance of vaccine antigen expression by antigen-specific immune responses. However, the cell types responsible for the clearance of plasmid DNA vaccine antigens are not known. Here we demonstrate that macrophages, NK cells, and CD8+ T cells did not significantly contribute to the DNA antigen clearance but CD4+ T cells played the crucial role in attenuating plasmid DNA vaccine antigen expression. Adoptive transfer experiments demonstrate that CD4+ T cells facilitated DNA vaccine antigen clearance in a Fas/FasL-dependent manner. Furthermore, we show that depletion of CD4+ T cells prevented the clearance of vaccine antigen and the appearance of a CD8+ T-cell immune response. Inoculation of major histocompatibility complex class II KO mice with the plasmid DNA led to persistent antigen expression and abolition of a CD8+ T-cell immune response. Importantly, the prolongation of antigen expression by disrupting the CD4+ T-cell Fas/FasL myocytes signaling led to a 3- to 5-fold increase of antigen-specific CD8+ T-cell responses. These data demonstrate a dominant role of CD4+ T cell–mediated cytotoxicity in plasmid DNA vaccine antigen clearance.


2007 ◽  
Vol 178 (9) ◽  
pp. 5652-5658 ◽  
Author(s):  
John R. Greenland ◽  
Ralf Geiben ◽  
Sharmistha Ghosh ◽  
William A. Pastor ◽  
Norman L. Letvin

2017 ◽  
Vol 2 (3) ◽  
pp. 1-12
Author(s):  
Tadesse B

Adenoviruses have moved to the forefront of vaccinology and are showing substantial prom ise as vehicles for antigen delivery for a number of vaccines currently being developed. Most studies to date have focused on human serotype adenoviruses, particularly human adenovirus type 5. Human serotype adenovirus vaccine vectors are particularly usef ul for development of veterinary vaccines as neutralizing antibodies to the vector will not usually be present in the vaccinates. Most vectors currently used as vaccine carriers are deleted in E1 gene. The original E1 deleted adenoviral vectors were constr ucted by homologous recombination. Replication incompetent vectors contain an antigen expression cassette substituted for the deleted E1A – E1B region. These replication incompitant adenoviruses can not replicate because of the deletion of the essential vir al E1 gene region containing two genes. Replication competent adenoviral vectors encode all of the remaining adenoviral antigens in addition to the transgene product, i.e., the vaccine antigen. The potential for adenoviruses to elicit powerful B cell and T cell responses in the mammalian host are the main reason for the use of these vectors in vaccine development. For effective veterinary use, extensive research on adenoviral vaccine vectors should be undertaken.


2011 ◽  
Vol 20 (6) ◽  
pp. 1285-1292 ◽  
Author(s):  
Tadayoshi Hirai ◽  
You-Wang Kim ◽  
Kazuhisa Kato ◽  
Kyoko Hiwasa-Tanase ◽  
Hiroshi Ezura

2021 ◽  
Vol 26 (37) ◽  
Author(s):  
Valérie Bouchez ◽  
Sophie Guillot ◽  
Annie Landier ◽  
Nathalie Armatys ◽  
Soraya Matczak ◽  
...  

Background Bordetella pertussis is the main agent of whooping cough. Vaccination with acellular pertussis vaccines has been largely implemented in high-income countries. These vaccines contain 1 to 5 antigens: pertussis toxin (PT), filamentous haemagglutinin (FHA), pertactin (PRN) and/or fimbrial proteins (FIM2 and FIM3). Monitoring the emergence of B. pertussis isolates that might partially escape vaccine-induced immunity is an essential component of public health strategies to control whooping cough. Aim We aimed to investigate temporal trends of fimbriae serotypes and vaccine antigen-expression in B. pertussis over a 23-year period in France (1996–2018). Methods Isolates (n = 2,280) were collected through hospital surveillance, capturing one third of hospitalised paediatric pertussis cases. We assayed PT, FHA and PRN production by Western blot (n = 1,428) and fimbriae production by serotyping (n = 1,058). Molecular events underlying antigen deficiency were investigated by genomic sequencing. Results The proportion of PRN-deficient B. pertussis isolates has increased steadily from 0% (0/38) in 2003 to 48.4% (31/64) in 2018 (chi-squared test for trend, p < 0.0001), whereas only 5 PT-, 5 FHA- and 9 FIM-deficient isolates were found. Impairment of PRN production was predominantly due to IS481 insertion within the prn gene or a 22 kb genomic inversion involving the prn promoter sequence, indicative of convergent evolution. FIM2-expressing isolates have emerged since 2011 at the expense of FIM3. Conclusions B. pertussis is evolving through the rapid increase of PRN-deficient isolates and a recent shift from FIM3 to FIM2 expression. Excluding PRN, the loss of vaccine antigen expression by circulating B. pertussis isolates is epidemiologically insignificant.


2011 ◽  
Vol 18 (4) ◽  
pp. 533-538 ◽  
Author(s):  
Ralf Geiben-Lynn ◽  
Kwesi Frimpong-Boateng ◽  
Norman L. Letvin

ABSTRACTThe magnitude of the immune responses elicited by plasmid DNA vaccines might be limited, in part, by the duration of vaccine antigen expressionin vivo. To explore strategies for improving plasmid DNA vaccine efficacy, we studied the apoptotic process in myocytes of mice vaccinated intramuscularly. We found that after vaccination, the proapoptotic protein caspase 12 (Casp12) was upregulated in myocytes coincident with the loss of vaccine antigen expression. To harness this observation to improve plasmid DNA vaccine efficacy, we used RNA interference technology, coadministering plasmid DNA expressing a short hairpin RNA (shRNA) of Casp12 with plasmid DNA vaccine constructs. This treatment with shRNA Casp12, administered twice within the first 10 days following vaccine administration, increased antigen expression 7-fold, the antigen-specific CD8+T cell immune response 6-fold, and antigen-specific antibody production 5-fold. This study demonstrates the critical role for Casp12 in plasmid DNA vaccine-induced immune responses and shows that increased antigen expression mediated by down-modulation of Casp12 can be used to potentiate vaccine efficacy.


Sign in / Sign up

Export Citation Format

Share Document