scholarly journals Synthesis of silver nanoparticle-decorated hydroxyapatite nanocomposite with combined bioactivity and antibacterial properties

Author(s):  
Soo-Ling Bee ◽  
Yazmin Bustami ◽  
A. Ul-Hamid ◽  
Keemi Lim ◽  
Z. A. Abdul Hamid

AbstractCombination of bioactive material such as hydroxyapatite (HAp) with antibacterial agents would have great potential to be used as bone implant materials to avert possible bacterial infection that can lead to implant-associated diseases. The present study aimed to develop an antibacterial silver nanoparticle-decorated hydroxyapatite (HAp/AgNPs) nanocomposite using chemical reduction and thermal calcination approaches. In this work, natural HAp that was extracted from chicken bone wastes is used as support matrix for the deposition of silver nanoparticles (AgNPs) to produce HAp/AgNPs nanocomposite. XRD, FESEM-EDX, HRTEM, and XPS analyses confirmed that spherical AgNPs were successfully synthesized and deposited on the surface of HAp particles, and the amount of AgNPs adhered on the HAp surface increased with increasing AgNO3 concentration used. The synthesized HAp/AgNPs nanocomposites demonstrated strong antibacterial activity against Staphylococcus aureus bacteria, where the antibacterial efficiency is relied on the amount and size of deposited AgNPs. In addition, the in vitro bioactivity examination in Hank’s balanced salt solution showed that more apatite were grown on the surface of HAp/AgNPs nanocomposite when AgNO3 concentration used >1 wt.%. Such nanocomposite with enhanced bioactivity and antibacterial properties emerged as a promising biomaterial to be applied for dentistry and orthopedic implantology.

Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 34
Author(s):  
Shaher Bano ◽  
Memoona Akhtar ◽  
Muhammad Yasir ◽  
Muhammad Salman Maqbool ◽  
Akbar Niaz ◽  
...  

Biomedical implants are the need of this era due to the increase in number of accidents and follow-up surgeries. Different types of bone diseases such as osteoarthritis, osteomalacia, bone cancer, etc., are increasing globally. Mesoporous bioactive glass nanoparticles (MBGNs) are used in biomedical devices due to their osteointegration and bioactive properties. In this study, silver (Ag)- and strontium (Sr)-doped mesoporous bioactive glass nanoparticles (Ag-Sr MBGNs) were prepared by a modified Stöber process. In this method, Ag+ and Sr2+ were co-substituted in pure MBGNs to harvest the antibacterial properties of Ag ions, as well as pro-osteogenic potential of Sr2 ions. The effect of the two-ion concentration on morphology, surface charge, composition, antibacterial ability, and in-vitro bioactivity was studied. Scanning electron microscopy (SEM), X-Ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) confirmed the doping of Sr and Ag in MBGNs. SEM and EDX analysis confirmed the spherical morphology and typical composition of MBGNs, respectively. The Ag-Sr MBGNs showed a strong antibacterial effect against Staphylococcus carnosus and Escherichia coli bacteria determined via turbidity and disc diffusion method. Moreover, the synthesized Ag-Sr MBGNs develop apatite-like crystals upon immersion in simulated body fluid (SBF), which suggested that the addition of Sr improved in vitro bioactivity. The Ag-Sr MBGNs synthesized in this study can be used for the preparation of scaffolds or as a filler material in the composite coatings for bone tissue engineering.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4643
Author(s):  
Hamisah Ismail ◽  
Farah ‘Atiqah Abdul Azam ◽  
Zalita Zainuddin ◽  
Hamidun Bunawan ◽  
Muhamad Afiq Akbar ◽  
...  

β-wollastonite (βW) has sparked much interest in bone defect recovery and regeneration. Biomaterial-associated infections and reactions between implants with human cells have become a standard clinical concern. In this study, a green synthesized βW, synthesized from rice husk ash and a calcined limestone precursor, was incorporated with mullite, maghemite, and silver to produce β wollastonite composite (βWMAF) to enhance the tensile strength and antibacterial properties. The addition of mullite to the βWMAF increased the tensile strength compared to βW. In vitro bioactivity, antibacterial efficacy, and physicochemical properties of the β-wollastonite and βWMAF were characterized. βW and βWMAF samples formed apatite spherules when immersed in simulated body fluid (SBF) for 1 day. In conclusion, βWMAF, according to the tensile strength, bioactivity, and antibacterial activity, was observed in this research and appropriate for the reconstruction of cancellous bone defects.


2016 ◽  
Vol 60 (7) ◽  
pp. 4342-4345 ◽  
Author(s):  
Adam Belley ◽  
David Lalonde Seguin ◽  
Francis Arhin ◽  
Greg Moeck

ABSTRACTAntibacterial agents that kill nondividing bacteria may be of utility in treating persistent infections. Oritavancin and dalbavancin are bactericidal lipoglycopeptides that are approved for acute bacterial skin and skin structure infections in adults caused by susceptible Gram-positive pathogens. Using time-kill methodology, we demonstrate that oritavancin exerts bactericidal activity against methicillin-resistantStaphylococcus aureus(MRSA) isolates that are maintained in a nondividing statein vitro, whereas dalbavancin and the glycopeptide vancomycin do not.


2010 ◽  
Vol 36 (2) ◽  
pp. 513-519 ◽  
Author(s):  
W. Ortega-Lara ◽  
D.A. Cortés-Hernández ◽  
S. Best ◽  
R. Brooks ◽  
A. Hernández-Ramírez

2021 ◽  
Vol 90 (1) ◽  
pp. 2
Author(s):  
Halyna Hryhoriv ◽  
Illia Mariutsa ◽  
Sergiy M. Kovalenko ◽  
Victoriya Georgiyants ◽  
Lina Perekhoda ◽  
...  

Among all modern antibiotics, fluoroquinolones are well known for their broad spectrums of activity and efficiency toward microorganisms and viruses. However, antibiotic resistance is still a problem, which has encouraged medicinal chemists to modify the initial structures in order to combat resistant strains. Our current work is aimed at synthesizing novel hybrid derivatives of ciprofloxacin and norfloxacin and applying docking studies and biological activity evaluations in order to find active promising molecules. We succeeded in the development of a synthetic method towards 1,2,3-triazole-substituted ciprofloxacin and norfloxacin derivatives. The structure and purity of the obtained compounds were confirmed by 1H NMR, 13C NMR, 19F NMR, LC/MS, UV-, IR- spectroscopy. Docking studies, together with in vitro research against Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Bacillus subtilis ATCC 6633, Pseudomonas aeruginosa ATCC 27853, Candida albicans NCTC 885-653 revealed compounds in which activity exceeded the initial molecules.


2020 ◽  
Vol 11 (6) ◽  
pp. 5257-5265
Author(s):  
Samia Rabah ◽  
Kahina Kouachi ◽  
Patrícia A. B. Ramos ◽  
Ana Peixoto Gomes ◽  
Adelaide Almeida ◽  
...  

Allium triquetrum L. bulbs, flowers and leaves are proved to be valuable sources of value-added lipophilic compounds, specifically as antibacterial agents against methicillin-resistant Staphylococcus aureus.


2019 ◽  
Vol 31 (12) ◽  
pp. 2955-2958
Author(s):  
R.H. Zaooli ◽  
F.A. Hussein ◽  
N.N.A. Jafar ◽  
S.N.K. Al-Thamir

Many derivatives of 4-chloro-3,5-dimethylphenol have been synthesized using Suzuki reaction and characterized by IR, 1H NMR and micro elemental analysis. These compounds also tested in terms of their antibacterial properties against Staphylococcus aureus, Escherichia coli and Proteus mirabilis.


Author(s):  
Krishna Reddy BV ◽  
Avinash Kumar G ◽  
Nageswara Rao G

Nanoparticles have their demand in various fields of science and technology and their applications extend even in medical and pharmaceutical arena. They have been used as preservatives, diagnosing aids and potent antibacterial agents. But their production is a serious matter of concern when it comes to cost, efficacy and toxicity issues. Overcoming these limitations green synthesis has taken its advantage for their commercial and large scale synthesis. This research will focus on the preparation of nano particles of silver with the help of purified leaf extract from Lannea coromandelica and evaluation of the same using UV-Vis Spectrophotometry. The nanoparticles exhibited surface plasmon resonance at 420nm in UV spectroscopy. Futhermore, nanoparticles have been evaluated for their antibacterial activity on Putida vulgaris, Staphylococcus aureus, and Bacillus subtillis. The results proved the eco friendly synthesized silver nanoparticles have a good antibacterial and can be used effectively in therapies targeting infections and infectious wounds.


Sign in / Sign up

Export Citation Format

Share Document