Antibacterial properties of biosynthesized silver nano particles

Author(s):  
Krishna Reddy BV ◽  
Avinash Kumar G ◽  
Nageswara Rao G

Nanoparticles have their demand in various fields of science and technology and their applications extend even in medical and pharmaceutical arena. They have been used as preservatives, diagnosing aids and potent antibacterial agents. But their production is a serious matter of concern when it comes to cost, efficacy and toxicity issues. Overcoming these limitations green synthesis has taken its advantage for their commercial and large scale synthesis. This research will focus on the preparation of nano particles of silver with the help of purified leaf extract from Lannea coromandelica and evaluation of the same using UV-Vis Spectrophotometry. The nanoparticles exhibited surface plasmon resonance at 420nm in UV spectroscopy. Futhermore, nanoparticles have been evaluated for their antibacterial activity on Putida vulgaris, Staphylococcus aureus, and Bacillus subtillis. The results proved the eco friendly synthesized silver nanoparticles have a good antibacterial and can be used effectively in therapies targeting infections and infectious wounds.

Author(s):  
Avinash Kumar Reddy G ◽  
Krishna Reddy BV ◽  
Nageswara Rao G

Silver nanoparticles have their demand in various fields of science and technology and their applications extend even in medical and pharmaceutical arenas. They have been used as preservatives, diagnosing aids and potent antibacterial agents. But their production is a serious matter of concern when it comes to cost, efficacy and toxicity issues. Overcoming these limitations green synthesis has taken its advantage for their commercial and large scale synthesis. This research concentrates on the preparation of silver nano particles by using purified leaf extract of Lannea coromandelica and evaluation of the same using UV-Vis Spectrophotometry, FTIR, EDXS, SEM and particle size analysis. The produced nanoparticles exhibited surface plasmon resonance at 420nm in UV spectroscopy. EDS Spectrum showed the presence of metallic silver in the solution. They are roughly cubic in shape, smooth surfaced and measure about 10-20nm in diameter which is evident from the particle size analysis. FTIR studies revealed the presence of O-H groups indicating polyphenols and also confirms capping of proteins over the nanoparticles. The results proved the eco-friendly synthesized silver nanoparticles. The prepared nanoparticles have been analyzed using sophisticated analytical instruments. The results confirm the formation of silver nanoparticles. The bio-mimetic synthesis of silver nanoparticles is relatively safer and cost effective. The potency and effect of silver nanoparticles was determined yet the toxicity was to be considered for establishing it as a therapeutic agent.


Author(s):  
A. O. Akintola ◽  
A. M. Azeez ◽  
B. D. Kehinde ◽  
I. C. Oladipo

Silver nano particles (AgNPs) were green synthesized using Adansonia digitata leaf extract. The synthesized silver nano particles were characterized in terms of synthesis, size, shape, morphology and capping functionalities by UV-Visible Spectroscopy, Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). Antimicrobial activity of the synthesized silver nano particles was investigated by well diffusion method. The antibacterial activity of the nano particle was studied against Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeurigunosa, Salmonella typhi and Klebsiella pneumonae while the antifungal activity was studied against Candida albicans, Aspergillus niger, Penicillum notatum and Rhizopus stolomifer. The synthesized AgNPs was active against all the studied microorganisms. Staphylococcus aureus was the most susceptible bacterium (inhibition zones ranging from 12.00 to 28.00 mm, MIC: 30 µl, MBC: 50 µl) while Aspergillus niger was the most susceptible fungi (inhibition zones ranging from 10.00 to 18.00 mm, MIC: 90 µl, MFC: 120 µl. In conclusion the synthesized silver nanoparticles was found to have antimicrobial activity against the pathogenic bacteria and fungi tested and hence has a great potential in biomedical application for the treatment of microbial infections.


2021 ◽  
Author(s):  
Sunil T. Galatage ◽  
Aditya S. Hebalkar ◽  
Shradhey V. Dhobale ◽  
Omkar R. Mali ◽  
Pranav S. Kumbhar ◽  
...  

Nanotechnology is an expanding area of research where we use to deal with the materials in Nano-dimension. The conventional procedures for synthesizing metal nanoparticles need to sophisticated and costly instruments or high-priced chemicals. Moreover, the techniques may not be environmentally safe. Therefore “green” technologies for synthesis of nanoparticles are always preferred which is simple, convenient, eco-friendly and cost effective. Green synthesis of nanoparticle is a novel way to synthesis nanoparticles by using biological sources. It is gaining attention due to its cost effective, ecofriendly and large scale production possibilities. Silver nanoparticles (AgNPs) are one of the most vital and fascinating nanomaterials among several metallic nanoparticles that are involved in biomedical applications. It has vital importance in nanoscience and naomedicines to treat and prevent vital disease in human beings especially in cancer treatment. In current work we discussed different methods for synthesis of AgNPs like biological, chemical and physical along with its characterization. We have also discussed vital importance of AgNPs to cure life threatnign diseases like cancer along with antidiabetic, antifungal, antiviral and antimicrobial alog with its molecular mode of action etc. Finally we conclude by discussing future prospects and possible applications of silver nano particles.


Antibiotics ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 68 ◽  
Author(s):  
Mahsa Eshghi ◽  
Hamideh Vaghari ◽  
Yahya Najian ◽  
Mohammad Najian ◽  
Hoda Jafarizadeh-Malmiri ◽  
...  

Silver nanoparticles (Ag NPs) were synthesized using Juglans regia (J. regia) leaf extract, as both reducing and stabilizing agents through microwave irradiation method. The effects of a 1% (w/v) amount of leaf extract (0.1–0.9 mL) and an amount of 1 mM AgNO3 solution (15–25 mL) on the broad emission peak (λmax) and concentration of the synthesized Ag NPs solution were investigated using response surface methodology (RSM). Fourier transform infrared analysis indicated the main functional groups existing in the J. regia leaf extract. Dynamic light scattering, UV-Vis spectroscopy and transmission electron microscopy were used to characterize the synthesized Ag NPs. Fabricated Ag NPs with the mean particle size and polydispersity index and maximum concentration and zeta potential of 168 nm, 0.419, 135.16 ppm and −15.6 mV, respectively, were obtained using 0.1 mL of J. regia leaf extract and 15 mL of AgNO3. The antibacterial activity of the fabricated Ag NPs was assessed against both Gram negative (Escherichia coli) and positive (Staphylococcus aureus) bacteria and was found to possess high bactericidal effects.


2019 ◽  
Vol 10 (4) ◽  
pp. 1073-1081 ◽  
Author(s):  
Milena Lima Guimarães ◽  
Fernando Antônio Gomes da Silva ◽  
Mateus Matiuzzi da Costa ◽  
Helinando Pequeno de Oliveira

2015 ◽  
Vol 121 ◽  
pp. 135-141 ◽  
Author(s):  
Muthukumar Harshiny ◽  
Manickam Matheswaran ◽  
Gangasalam Arthanareeswaran ◽  
Shanmugam Kumaran ◽  
Shanmuganathan Rajasree

2013 ◽  
Vol 2 (11) ◽  
pp. 185-188
Author(s):  
Md. Al Nayem Chowdhury ◽  
Md. Nazmul Hossain ◽  
Md. Mahbubur Rahman ◽  
Md. Ashrafuzzaman

Staphylococcus aureus is one of the major pathogen responsible for skin infection, urinary tract infection (UTI) and endocarditis in human. The study was performed to determine the prevalence of multidrug resistant S. aureus in human clinical sample and to evaluate their sensitivity to Allamanda cathartica L. leaf extract. A total of 12 isolates were identified belongs to S. aureus by performing several physiological and biochemical tests. The isolates exhibited highest resistant (75%) to streptomycin and lowest (33.33%) against co-trimoxazole followed by disc diffusion assay of eight antibiotics tested. The other four antibiotics such as azithromycin, chloramphenicol, gentamycin and erythromycin exhibited 50 to 66.67% resistant to present isolates. Here we found that 75% of S. aureus isolates were multidrug-resistant (MDR). The crude leaf extract of A. cathartica L. found to possess antibacterial properties at the rate of 83.33% against S. aureus isolates with 12-22 mm zone of inhibition. Results of TLC states that Benzene : Ethyl acetate (1:1) solvent system was more effective for initial separation of compound from crude leaf extract resulted three distinct bands with different Rf values ranging from 0.53 to 0.89. The result of this study refers that A. cathartica L. leaf extract would be useful to develop effective drugs that would reduce the higher prevalence of multidrug resistance S. aureus causing clinical infection in human.DOI: http://dx.doi.org/10.3329/icpj.v2i11.16525 International Current Pharmaceutical Journal, October 2013, 2(11): 185-188 


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1775 ◽  
Author(s):  
Raphaël E. Duval ◽  
Jimmy Gouyau ◽  
Emmanuel Lamouroux

Due to the constant increase in the number of infectious diseases and the concomitant lack of treatment available, metallic nanoparticles (e.g., silver nanoparticles) have been of particular interest in the last decades. Indeed, several studies suggest that silver nanoparticles have valuable antimicrobial activities, especially against bacteria, which may lead us to think that these nanoparticles may one day be an attractive therapeutic option for the treatment of bacterial infections. Unfortunately, when we look a little closer to these studies, we can see a very great heterogeneity (e.g., in the study design, in the synthetic process of nanoparticles, in the methods that explore the antibacterial properties of nanoparticles and in the bacteria chosen) making cross-interpretation between these studies impossible, and significantly limiting the interest of silver nanoparticles as promising antibacterial agents. We have selected forty-nine international publications published since 2015, and propose to discuss, not the results obtained, but precisely the different methodologies developed in these publications. Through this discussion, we highlighted the aspects to improve, or at least to homogenize, in order to definitively establish the interest of silver nanoparticles as valuable antibacterial agents.


2021 ◽  
Author(s):  
Shirisha A ◽  
ANUMOLU VIJAYA KUMAR ◽  
Laxman Chatlod R ◽  
Shashi Kumar M ◽  
Krishnaiah N ◽  
...  

Abstract The present study mainly deals with the green synthesis, characterization and evaluation of antibacterial properties of silver nanoparticles (AgNPs) synthesized by using the leaf extract of Moringa oleifera and fruit extract of Tamarindus indica. In this study for synthesis of silver nanoparticles different ratios of 1mM silver nitrate and Moringa oleifera leaf extract i.e, 95:5, 90:10 and 85: 15 was taken in conical flask and kept for one 1 hr at 25 0 c on magnetic stirrer, out of which 90:10 ratio was selected for further study based on highest peak, good size and stability. Tamarindus indica fruit extract was added to silver nitrate solution till the colour of the solution changes from light brown to chocolate brownish colour. The synthesized silver nanoparticles were characterized by UV-Visible spectroscopy, Zeta potential, size distribution by intensity. The absorption spectrum of the silver nano solution prepared by using Moringa oleifera and Tamarindus indica fruit extract showed a surface plasmon absorption band with maximum of 420 nm and 430 nm respectively indicating the presence of silver nanoparticles. The zeta value of silver nanoparticles synthesized from Moringa oleifera and Tamarindus indica fruit extract was -12.5 mV and -15.5 mV, size of 110.2 nm and 130.2 nm respectively. The antibacterial efficacy of nanosilver was checked by agar well diffusion method, and the silver nanoparticles showed effective antibacterial activity against Staphylococcus aureus.


2021 ◽  
Vol 21 (10) ◽  
pp. 5120-5130
Author(s):  
Hui Long ◽  
Wei-Cong Kuang ◽  
Shi-Liang Wang ◽  
Jing-Xian Zhang ◽  
Lang-Huan Huang ◽  
...  

Poly(cyclotriphosphazene-co-4,4’-diaminodiphenyl ether) (PPO) microspheres were prepared via a precipitation polymerization method, using hexachlorocyclotriphosphazene (HCCP) and 4,4’-diaminodiphenyl ether (ODA) as monomers. Silver-loaded PPO (PPOA) microspheres were generated by the in situ loading of silver nanoparticles onto the surface by Ag+ reduction. Our results showed that PPOA microspheres were successfully prepared with a relatively uniform distribution of silver nanoparticles on microsphere surfaces. PPOA microspheres had good thermal stability and excellent antibacterial activity towards Escherichia coli and Staphylococcus aureus. Furthermore, PPOA microspheres exhibited lower cytotoxicity when compared to citrate-modified silver nanoparticles (c-Ag), and good sustained release properties. Our data indicated that polyphosphazene-based PPOA microspheres are promising antibacterial agents in the biological materials field.


Sign in / Sign up

Export Citation Format

Share Document