Vibrating Combustion as a Promising Way of Reducing Harmful Emissions Into the Atmosphere

Author(s):  
O. G. Stonik ◽  
V. D. Geshele ◽  
S. A. Kovalev
Author(s):  
A.A. Meshkov ◽  
◽  
G.I. Korshunov ◽  
N.K. Kondrasheva ◽  
A.M. Eremeeva ◽  
...  

Author(s):  
M Mohammadpour ◽  
S Theodossiades ◽  
H Rahnejat ◽  
D Dowson

Transmission efficiency is the main objective in the development of vehicular differential systems, comprising hypoid gear pairs. The overall aim is to contribute to improved vehicle fuel efficiency and thus levels of harmful emissions for modern desired eco-drive axles. Detailed predictive analysis plays an important role in this quest, particularly under realistic operating conditions, comprising high contact loads and shear rates. Under these conditions, the hypoid gear pairs are subject to mixed non-Newtonian thermo-elastohydrodynamic conditions, which is the approach undertaken in this paper. Such an approach for hypoid gear pair has not hitherto been reported in the literature.


2021 ◽  
Vol 13 (6) ◽  
pp. 3086
Author(s):  
Marcin Jacek Kłos ◽  
Grzegorz Sierpiński

The intense growth of cities affects their inhabitants to a considerable extent. The issues facing the traveling population include congestion and growing harmful emissions. Urban transport requires changes towards eco-friendly solutions. However, even though new forms of traveling (sharing services) are being implemented, their integration with public transport remains problematic. On account of the large number of available services combined with the absence of their integration, city inhabitants are faced with the dilemma of choosing between one or several transport modes which would enable them to make the given trip. The main goal of this article is to propose a model for integration of different transport services which could support those who intend to travel in the decision-making process. Therefore, the parameters of a model of urban sharing services were identified and classified. The parameters discussed in the paper with reference to an extensive literature review describe how individual sharing services are functioning. What has also been identified is the location-specific factors as well as those related to the potential area of operation which affect the integration with public transport. In order to take all the relevant parameters into account and find a solution to the problem at hand, a multi-criteria decision-making approach has been proposed. To this end, scores and weights determining their impact on the model have been established. For purposes of the solution in question, the relevant calculations were conducted by referring to an actual need to travel between selected locations.


2021 ◽  
Vol 13 (10) ◽  
pp. 5599
Author(s):  
Eko Supriyanto ◽  
Jayan Sentanuhady ◽  
Ariyana Dwiputra ◽  
Ari Permana ◽  
Muhammad Akhsin Muflikhun

Biodiesel has caught the attention of many researchers because it has great potential to be a sustainable fossil fuel substitute. Biodiesel has a non-toxic and renewable nature and has been proven to emit less environmentally harmful emissions such as hydrocarbons (HC), and carbon monoxide (CO) as smoke particles during combustion. Problems related to global warming caused by greenhouse gas (GHG) emissions could also be solved by utilizing biodiesel as a daily energy source. However, the expensive cost of biodiesel production, mainly because of the cost of natural feedstock, hinders the potential of biodiesel commercialization. The selection of natural sources of biodiesel should be made with observations from economic, agricultural, and technical perspectives to obtain one feasible biodiesel with superior characteristics. This review paper presents a detailed overview of various natural sources, their physicochemical properties, the performance, emission, and combustion characteristics of biodiesel when used in a diesel engine. The recent progress in studies about natural feedstocks and manufacturing methods used in biodiesel production were evaluated in detail. Finally, the findings of the present work reveal that transesterification is currently the most superior and commonly used biodiesel production method compared to other methods available.


2014 ◽  
Vol 13 (2) ◽  
pp. 5-17
Author(s):  
Agnieszka Bok ◽  
Joanna Guziałowska-Tic ◽  
Wilhelm Jan Tic

Abstract The dynamic growth of the use of non-renewable fuels for energy purposes results in demand for catalysts to improve their combustion process. The paper describes catalysts used mainly in the processes of combustion of motor fuels and fuel oils. These catalysts make it possible to raise the efficiency of oxidation processes simultanously reducing the emission of pollutants. The key to success is the selection of catalyst compounds that will reduce harmful emissions of combustion products into the atmosphere. Catalysts are introduced into the combustion zone in form of solutions miscible with fuel or with air supplied to the combustion process. The following compounds soluble in fuel are inclused in the composition of the described catalysts: organometallic complexes, manganese compounds, salts originated from organic acids, ferrocen and its derivatives and sodium chloride and magnesium chloride responsible for burning the soot (chlorides). The priority is to minimize emissions of volatile organic compounds, nitrogen oxides, sulphur oxides, and carbon monoxide, as well as particulate matter.


Author(s):  
Toshiaki Sakurazawa ◽  
Takeo Oda ◽  
Satoshi Takami ◽  
Atsushi Okuto ◽  
Yasuhiro Kinoshita

This paper describes the development of the Dry Low Emission (DLE) combustor for L30A gas turbine. Kawasaki Heavy Industries, LTD (KHI) has been producing relatively small-size gas turbines (25kW to 30MW class). L30A gas turbine, which has a rated output of 30MW, achieved the thermal efficiency of more than 40%. Most continuous operation models use DLE combustion systems to reduce the harmful emissions and to meet the emission regulation or self-imposed restrictions. KHI’s DLE combustors consist of three burners, a diffusion pilot burner, a lean premix main burner, and supplemental burners. KHI’s proven DLE technologies are also adapted to the L30A combustor design. The development of L30 combustor is divided in four main steps. In the first step, Computational Fluid Dynamics (CFD) analyses were carried out to optimize the detail configuration of the combustor. In a second step, an experimental evaluation using single-can-combustor was conducted in-house intermediate-pressure test facility to evaluate the performances such as ignition, emissions, liner wall temperature, exhaust temperature distribution, and satisfactory results were obtained. In the third step, actual pressure and temperature rig tests were carried out at the Institute for Power Plant Technology, Steam and Gas Turbines (IKDG) of Aachen University, achieving NOx emission value of less than 15ppm (O2=15%). Finally, the L30A commercial validation engine was tested in an in-house test facility, NOx emission is achieved less than 15ppm (O2=15%) between 50% and 100% load operation point. L30A field validation engine have been operated from September 2012 at a chemical industries in Japan.


2005 ◽  
Author(s):  
Jim Mulrooney ◽  
John Clifford ◽  
Colin Fitzpatrick ◽  
Elfed Lewis ◽  
W. Z. Zhao ◽  
...  

2007 ◽  
Vol 553 ◽  
pp. 124-129 ◽  
Author(s):  
Isaac Arellano ◽  
Gabriel Plascencia ◽  
Elías Carrillo ◽  
Miguel A. Barrón ◽  
Adolfo Sánchez ◽  
...  

In this paper we propose the design of a novel induction furnace for glass melting. The design is based on a mathematical analysis and performed numerically by means of the Finite Element Method. Several induction coils configurations were tested. The results from the mathematical model show that it is possible to melt glass in a furnace whose hearth is no larger than half a metre by using axial induction coils and high frequencies. This furnace configuration may result in increased glass melting rates along with the elimination of harmful emissions.


Sign in / Sign up

Export Citation Format

Share Document