scholarly journals A low-area design of two-factor authentication using DIES and SBI for IoT security

Author(s):  
M. N. Sudha ◽  
M. Rajendiran ◽  
Mariusz Specht ◽  
Kasarla Satish Reddy ◽  
S. Sugumaran

AbstractInternet of things (IoTs) is an integration of heterogeneous physical devices which are interconnected and communicated over the physical Internet. The design of secure, lightweight and an effective authentication protocol is required, because the information is transmitted among the remote user and numerous sensing devices over the IoT network. Recently, two-factor authentication (TFA) scheme is developed for providing the security among the IoT devices. But, the performances of the IoT network are affected due to the less memory storage and restricted resource of the IoT. In this paper, the integration of data inverting encoding scheme (DIES) and substitution-box-based inverter is proposed for providing the security using the random values of one-time alias identity, challenge, server nonce and device nonce. Here, the linearity of produced random values is decreased for each clock cycle based on the switching characteristics of the selection line in DIES. Moreover, the linear feedback shift register is used in the adaptive physically unclonable function (APUF) for generating the random response value. The APUF–DIES-IoT architecture is analyzed in terms of lookup table, flip flops, slices, frequency and delay. This APUF–DIES-IoT architecture is analyzed for different security and authentication performances. Two existing methods are considered to evaluate the APUF–DIES-IoT architecture such as TFA-PUF-IoT and TFA-APUF-IoT. The APUF–DIES-IoT architecture uses 36 flip flops at Virtex 6; it is less when compared to the TFA-PUF-IoT and TFA-APUF-IoT.

2021 ◽  
Vol 14 (1) ◽  
pp. 169-180
Author(s):  
Krishna Gurumanapalli ◽  
◽  
Nagendra Muthuluru ◽  

Internet-of-Things (IoT) is growing network paradigm which enables mutual communication between the user and smart devices using the internet. The IoT devices are susceptible to the security threats, due to placement of restricted computational capabilities of the computing devices in IoT. The conventional encryption algorithm utilizes the high amount of resource block in it which increases the area and power. Moreover, Two Factor Authentication (TFA) scheme based authentication protocols does not have the efficiency to secure the data. Because the random number generated by the TFA is ideal for all IoT devices which are easy to hack by the unauthorized persons. In this Research paper, the Linear Feedback Shift Register (LFSR) based Reconfigurable Physical Unclonable Function (RPUF) is proposed to overcome the security issues caused in the IoT communication. The RPUF is designed based on the LFSR to generate the random number for every clock cycle. Normally, reconfigurable process helps to generate the different output values for every clock cycle. But, it failed to generate different outputs for same input values. Here, LFSR based RPUF helps to generated the different response values even the same challenge is given to the input side. The Lightweight TFA scheme is presented for IoT, where PUF has been considered as one of the major authentication factors. At last, Spartan 6 and Virtex 6 Field Programmable Gate Array (FPGA) performances are calculated for proposed TFA-RPUF-IoT and existing TFA-PUF-IoT protocols. In Spartan 6, TFA-RPUF-IoT protocol occupied 11 slices, 31 LUTs, 42 flip flops which are less compared to conventional TFA-PUF-IoT.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 855
Author(s):  
Tzung-Her Chen ◽  
Wei-Bin Lee ◽  
Hsing-Bai Chen ◽  
Chien-Lung Wang

Although digital signature has been a fundamental technology for cryptosystems, it still draws considerable attention from both academia and industry due to the recent raising interest in blockchains. This article revisits the subliminal channel existing digital signature and reviews its abuse risk of the constructor’s private key. From a different perspective on the subliminal channel, we find the new concept named the chamber of secrets in blockchains. The found concept, whereby the secret is hidden and later recovered by the constructor from the common transactions in a blockchain, highlights a new way to encourage implementing various applications to benefit efficiency and security. Thus, the proposed scheme benefits from the following advantages: (1) avoiding the high maintenance cost of certificate chain of certificate authority, or public key infrastructure, and (2) seamlessly integrating with blockchains using the property of chamber of secrets. In order to easily understand the superiority of this new concept, a remote authentication scenario is taken as a paradigm of IoT to demonstrate that the further advantages are achieved: (1) avoiding high demand for storage space in IoT devices, and (2) avoiding maintaining a sensitive table in IoT server.


Author(s):  
Shen Xin En ◽  
Liu Si Ling ◽  
Fan Cheng Hao

In recent years, due to their frequent use and widespread use, IoT (Internet of Things) devices have become an attractive target for hackers. As a result of their limited network resources and complex operating systems, they are vulnerable to attacks. Using a honeypot can, therefore, be a very effective way of detecting malicious requests and capturing samples of exploits. The purpose of this article is to introduce honeypots, the rise of IoT devices, and how they can be exploited by attackers. Various honeypot ecosystems will be investigated further for capturing and analyzing information from attacks against these IoT devices. As well as how to leverage proactive strategies in terms of IoT security, it will provide insights on the attack vectors present in most IoT systems, along with understanding attack patterns.


Author(s):  
Aman Tyagi

Elderly population in the Asian countries is increasing at a very fast rate. Lack of healthcare resources and infrastructure in many countries makes the task of provding proper healthcare difficult. Internet of things (IoT) in healthcare can address the problem effectively. Patient care is possible at home using IoT devices. IoT devices are used to collect different types of data. Various algorithms may be used to analyse data. IoT devices are connected to the internet and all the data of the patients with various health reports are available online and hence security issues arise. IoT sensors, IoT communication technologies, IoT gadgets, components of IoT, IoT layers, cloud and fog computing, benefits of IoT, IoT-based algorithms, IoT security issues, and IoT challenges are discussed in the chapter. Nowadays global epidemic COVID19 has demolished the economy and health services of all the countries worldwide. Usefulness of IoT in COVID19-related issues is explained here.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Deris Stiawan ◽  
Mohd. Yazid Idris ◽  
Reza Firsandaya Malik ◽  
Siti Nurmaini ◽  
Nizar Alsharif ◽  
...  

Internet of Things (IoT) devices may transfer data to the gateway/application server through File Transfer Protocol (FTP) transaction. Unfortunately, in terms of security, the FTP server at a gateway or data sink very often is improperly set up. At the same time, password matching/theft holding is among the popular attacks as the intruders attack the IoT network. Thus, this paper attempts to provide an insight of this type of attack with the main aim of coming up with attack patterns that may help the IoT system administrator to analyze any similar attacks. This paper investigates brute force attack (BFA) on the FTP server of the IoT network by using a time-sensitive statistical relationship approach and visualizing the attack patterns that identify its configurations. The investigation focuses on attacks launched from the internal network, due to the assumption that the IoT network has already installed a firewall. An insider/internal attack launched from an internal network endangers more the entire IoT security system. The experiments use the IoT network testbed that mimic the internal attack scenario with three major goals: (i) to provide a topological description on how an insider attack occurs; (ii) to achieve attack pattern extraction from raw sniffed data; and (iii) to establish attack pattern identification as a parameter to visualize real-time attacks. Experimental results validate the investigation.


Author(s):  
K. Dinesh Kumar ◽  
Venkata Rathnam T. ◽  
Venkata Ramana R. ◽  
M. Sudhakara ◽  
Ravi Kumar Poluru

Internet of things (IoT) technology plays a vital role in the current technologies because IoT develops a network by integrating different kinds of objects and sensors to create the communication among objects directly without human interaction. With the presence of internet of things technology in our daily comes smart thinking and various advantages. At the same time, secure systems have been a most important concern for the protection of information systems and networks. However, adopting traditional security management systems in the internet of things leads several issues due to the limited privacy and policies like privacy standards, protocol stacks, and authentication rules. Usually, IoT devices has limited network capacities, storage, and computing processors. So they are having more chances to attacks. Data security, privacy, and reliability are three main challenges in the IoT security domain. To address the solutions for the above issues, IoT technology has to provide advanced privacy and policies in this large incoming data source. Blockchain is one of the trending technologies in the privacy management to provide the security. So this chapter is focused on the blockchain technologies which can be able to solve several IoT security issues. This review mainly focused on the state-of-the-art IoT security issues and vulnerabilities by existing review works in the IoT security domains. The taxonomy is presented about security issues in the view of communication, architecture, and applications. Also presented are the challenges of IoT security management systems. The main aim of this chapter is to describe the importance of blockchain technology in IoT security systems. Finally, it highlights the future directions of blockchain technology roles in IoT systems, which can be helpful for further improvements.


Author(s):  
Mamata Rath ◽  
Bibudhendu Pati

Adoption of Internet of Things (IoT) and Cloud of Things (CoT) in the current developing technology era are expected to be more and more invasive, making them important mechanism of the future Internet-based communication systems. Cloud of Things and Internet of Things (IoT) are two emerging as well as diversified advanced domains that are diversified in current technological scenario. Paradigm where Cloud and IoT are merged together is foreseen as disruptive and as an enabler of a large number of application scenarios. Due to the adoption of the Cloud and IoT paradigm a number of applications are gaining important technical attention. In the future, it is going to be more complicated a setup to handle security in technology. Information till now will severely get changed and it will be very tough to keep up with varying technology. Organisations will have to repeatedly switch over to new skill-based technology with respect to higher expenditure. Latest tools, methods and enough expertise are highly essential to control threats and vulnerability to computing systems. Keeping in view the integration of Cloud computing and IoT in the new domain of Cloud of things, the said article provides an up-to-date eminence of Cloud-based IoT applications and Cloud of Things with a focus on their security and application-oriented challenges. These challenges are then synthesized in detail to present a technical survey on various issues related to IoT security, concerns, adopted mechanisms and their positive security assurance using Cloud of Things.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Alireza Monemi ◽  
Chia Yee Ooi ◽  
Muhammad Nadzir Marsono

Network-on-Chip (NoC) is fast emerging as an on-chip communication alternative for many-core System-on-Chips (SoCs). However, designing a high performance low latency NoC with low area overhead has remained a challenge. In this paper, we present a two-clock-cycle latency NoC microarchitecture. An efficient request masking technique is proposed to combine virtual channel (VC) allocation with switch allocation nonspeculatively. Our proposed NoC architecture is optimized in terms of area overhead, operating frequency, and quality-of-service (QoS). We evaluate our NoC against CONNECT, an open source low latency NoC design targeted for field-programmable gate array (FPGA). The experimental results on several FPGA devices show that our NoC router outperforms CONNECT with 50% reduction of logic cells (LCs) utilization, while it works with 100% and 35%~20% higher operating frequency compared to the one- and two-clock-cycle latency CONNECT NoC routers, respectively. Moreover, the proposed NoC router achieves 2.3 times better performance compared to CONNECT.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1549
Author(s):  
Jin-Kwan Jeon ◽  
In-Won Hwang ◽  
Hyun-Jun Lee ◽  
Younho Lee

We propose an improved RLizard implementation method that enables the RLizard key encapsulation mechanism (KEM) to run in a resource-constrained Internet of Things (IoT) environment with an 8-bit micro controller unit (MCU) and 8–16 KB of SRAM. Existing research has shown that the proposed method can function in a relatively high-end IoT environment, but there is a limitation when applying the existing implementation to our environment because of the insufficient SRAM space. We improve the implementation of the RLizard KEM by utilizing electrically erasable, programmable, read-only memory (EEPROM) and flash memory, which is possessed by all 8-bit ATmega MCUs. In addition, in order to prevent a decrease in execution time related to their use, we improve the multiplication process between polynomials utilizing the special property of the second multiplicand in each algorithm of the RLizard KEM. Thus, we reduce the required MCU clock cycle consumption. The results show that, compared to the existing code submitted to the National Institute of Standard and Technology (NIST) PQC standardization competition, the required MCU clock cycle is reduced by an average of 52%, and the memory used is reduced by approximately 77%. In this way, we verified that the RLizard KEM works well in our low-end IoT environments.


Sign in / Sign up

Export Citation Format

Share Document