TAL effector-dependent Bax gene expression in transgenic rice confers disease resistance to Xanthomonas oryzae pv. oryzae

Author(s):  
Yuejing Gui ◽  
Dongsheng Tian ◽  
Kar Hui Ong ◽  
Joanne Chin Yi Teo ◽  
Zhongchao Yin
2016 ◽  
Vol 7 ◽  
Author(s):  
Andrew C. Read ◽  
Fabio C. Rinaldi ◽  
Mathilde Hutin ◽  
Yong-Qiang He ◽  
Lindsay R. Triplett ◽  
...  

Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Guichun Wu ◽  
Yuqiang Zhang ◽  
Bo Wang ◽  
Kaihuai Li ◽  
Yuanlai Lou ◽  
...  

Abstract Background Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight, a devastating rice disease. The Xoo-rice interaction, wherein wide ranging host- and pathogen-derived proteins and genes wage molecular arms race, is a research hotspot. Hence, the identification of novel rice-induced Xoo virulence factors and characterization of their roles affecting rice global gene expression profiles will provide an integrated and better understanding of Xoo-rice interactions from the molecular perspective. Results Using comparative proteomics and an in vitro interaction system, we revealed that 5 protein spots from Xoo exhibited significantly different expression patterns (|fold change| > 1.5) at 3, 6, 12 h after susceptible rice leaf extract (RLX) treatment. MALDI-TOF MS analysis and pathogenicity tests showed that 4 host-induced proteins, including phosphohexose mutase, inositol monophosphatase, arginase and septum site-determining protein, affected Xoo virulence. Among them, mutants of two host-induced carbohydrate metabolism enzyme-encoding genes, ΔxanA and Δimp, elicited enhanced defense responses and nearly abolished Xoo virulence in rice. To decipher rice differentially expressed genes (DEGs) associated with xanA and imp, transcriptomic responses of ΔxanA-treated and Δimp-treated susceptible rice were compared to those in rice treated with PXO99A at 1 and 3 dpi. A total of 1521 and 227 DEGs were identified for PXO99A vs Δimp at 1 and 3 dpi, while for PXO99A vs ΔxanA, there were 131 and 106 DEGs, respectively. GO, KEGG and MapMan analyses revealed that the DEGs for PXO99A vs Δimp were mainly involved in photosynthesis, signal transduction, transcription, oxidation-reduction, hydrogen peroxide catabolism, ion transport, phenylpropanoid biosynthesis and metabolism of carbohydrates, lipids, amino acids, secondary metabolites, hormones, and nucleotides, while the DEGs from PXO99A vs ΔxanA were predominantly associated with photosynthesis, signal transduction, oxidation-reduction, phenylpropanoid biosynthesis, cytochrome P450 and metabolism of carbohydrates, lipids, amino acids, secondary metabolites and hormones. Although most pathways were associated with both the Δimp and ΔxanA treatments, the underlying genes were not the same. Conclusion Our study identified two novel host-induced virulence factors XanA and Imp in Xoo, and revealed their roles in global gene expression in susceptible rice. These results provide valuable insights into the molecular mechanisms of pathogen infection strategies and plant immunity.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Subhasis Karmakar ◽  
Kutubuddin A. Molla ◽  
Kaushik Das ◽  
Sailendra Nath Sarkar ◽  
Swapan K. Datta ◽  
...  

2021 ◽  
Vol 7 (12) ◽  
pp. 1024
Author(s):  
Fengxin Dong ◽  
Yihan Wang ◽  
Ming Tang

Poplars can be harmed by poplar canker. Inoculation with mycorrhizal fungi can improve the resistance of poplars to canker, but the molecular mechanism is still unclear. In this study, an aseptic inoculation system of L. bicolor–P. trichocarpa–B. dothidea was constructed, and transcriptome analysis was performed to investigate regulation by L. bicolor of the expression of genes in the roots of P. trichocarpa during the onset of B. dothidea infection, and a total of 3022 differentially expressed genes (DEGs) were identified. Weighted correlation network analysis (WGCNA) was performed on these DEGs, and 661 genes’ expressions were considered to be affected by inoculation with L. bicolor and B. dothidea. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that these 661 DEGs were involved in multiple pathways such as signal transduction, reactive oxygen metabolism, and plant-pathogen interaction. Inoculation with L. bicolor changed the gene expression pattern of the roots, evidencing its involvement in the disease resistance response of P. trichocarpa. This research reveals the mechanism of L. bicolor in inducing resistance to canker of P. trichocarpa at the molecular level and provides a theoretical basis for the practical application of mycorrhizal fungi to improve plant disease resistance.


2009 ◽  
Vol 134 (3) ◽  
pp. 379-386 ◽  
Author(s):  
Bao-Cheng Ma ◽  
Wan-Li Tang ◽  
Li-Yan Ma ◽  
Ling-Ling Li ◽  
Lu-Bin Zhang ◽  
...  

The pathogenic fungus Colletotrichum musae infects developing green bananas (Musa spp. AAA group), but remains latent until the fruit ripens. The aim of this research was to determine whether the appearance of disease symptoms is regulated by chitinase gene expression following treatment of fruit with benzothiadiazole (BTH) and methyl jasmonate (MeJA), and with physical (heat) and chemical (H2O2 and Ca2+-related) treatments. In bananas inoculated with C. musae, BTH and MeJA lowered disease severity and stimulated higher gene expression compared with the untreated controls during ripening. However, in naturally infected bananas, BTH and MeJA treatments slightly reduced transcription of the chitinase gene in green bananas, but they prolonged gene expression in ripe bananas and significantly reduced disease severity. The combination of H2O2 and the NADPH oxidase inhibitor, diphenylene iodonium, down-regulated chitinase gene expression and compromised disease resistance compared with H2O2 alone. Heat treatment (HT) or the combination of HT followed by CaCl2 reduced disease, but only the latter significantly upregulated chitinase gene expression. The combination of HT and a calcium ionophore (A23187) resulted in different disease indicies and different levels of gene expression depending upon the order of application: HT followed by A23187 induced higher gene expression and lower disease. The results suggest that disease resistance of green bananas could be related to high and prolonged levels of chitinase gene expression, and chitinase could be involved in harvested banana's anthracnose resistance activated by different defense pathway signals, such as BTH, MeJA, H2O2, and Ca2+.


2005 ◽  
Vol 7 (11) ◽  
pp. 1555-1564 ◽  
Author(s):  
Karl-Heinz Kogel ◽  
Gregor Langen

Oncogene ◽  
2002 ◽  
Vol 21 (17) ◽  
pp. 2762-2767 ◽  
Author(s):  
Sonomi Aiba-Masago ◽  
Xiao-bing Liu ◽  
Rejei Masago ◽  
Norma Vela-Roch ◽  
Fabio Jimenez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document