scholarly journals The effects of intradermal M. bovis and M. avium PPD test on immune-related mRNA and miRNA in dermal oedema exudates of water buffaloes (Bubalus bubalis)

2021 ◽  
Vol 53 (2) ◽  
Author(s):  
Carlotta Catozzi ◽  
Valentina Zamarian ◽  
Gabriele Marziano ◽  
Emanuela Dalla Costa ◽  
Alessandra Martucciello ◽  
...  

AbstractTuberculosis (TB) is a zoonotic disease primarily caused by pathogens belonging to the genus of Mycobacterium. Programs of control and eradication for bovine TB include a screening using single intradermal tuberculin (SIT) test with Mycobacterium bovis (M. bovis)-purified protein derivatives (PPD-B) single or concurrent with Mycobacterium avium (M. avium)-purified protein derivatives (PPD-A). This study aimed to determine the effects of intradermal PPD-B and PPD-A test on immune-related mRNA and microRNAs in dermal oedema exudates of water buffaloes (Bubalus bubalis). The investigation was carried out on RNA extracted from dermal oedema exudates of 36 animals, of which 24 were M. bovis positive (M. bovis+) and 12 M. avium positive (M. avium+). The lymphocyte polarization toward Th1, Th2, TReg, and Th17 lineages was addressed by measuring the abundance of the respective cytokines and transcription factors, namely TBET, STAT4, IFNγ, and IL1β for Th1; STAT5B, and IL4 for Th2; FOXP3 and IL10 for TReg; and RORC, STAT3, and IL17A for Th17. Due to the very low abundance of Th17-related genes, a digital PCR protocol was also applied. The abundance of microRNAs involved in the immune response against PPDs, including miR-122-5p, miR-148a-3p, miR30a, and miR-455-5p, was equally measured. Results showed that IFNγ (fold change = 2.54; p = 0.037) and miR-148a-3p (fold change = 2.54; p = 0.03) were upregulated in M. bovis+ as compared to M. avium+ samples. Our preliminary results supported the pivotal role of IFNγ in the local immune response related to PPD-B and highlighted the differential expression of miR-148a-3p, which downregulates the proinflammatory cytokines and the TLR4-mediated NF-κB activation, providing an anti-inflammation modulator in responses to mycobacterial infection.

2006 ◽  
Vol 74 (11) ◽  
pp. 6092-6099 ◽  
Author(s):  
Alissa A. Chackerian ◽  
Shi-Juan Chen ◽  
Scott J. Brodie ◽  
Jeanine D. Mattson ◽  
Terrill K. McClanahan ◽  
...  

ABSTRACT Interleukin-23 (IL-23), a member of the IL-12 family, is a heterodimeric cytokine that is composed of the p40 subunit of IL-12 plus a unique p19 subunit. IL-23 is critical for autoimmune inflammation, in part due to its stimulation of the proinflammatory cytokine IL-17A. It is less clear, however, if IL-23 is required during the immune response to pathogens. We examined the role of IL-23 during Mycobacterium bovis BCG infection. We found that IL-23 reduces the bacterial burden and promotes granuloma formation when IL-12 is absent. However, IL-23 does not contribute substantially to host resistance when IL-12 is present, as the ability to control bacterial growth and form granulomata is not affected in IL-23p19-deficient mice and mice treated with a specific anti-IL-23p19 antibody. IL-23p19-deficient mice are also able to mount an effective memory response to secondary infection with BCG. While IL-23p19-deficient mice do not produce IL-17A, this cytokine is not necessary for effective control of infection, and antibody blocking of IL-17A in both wild-type and IL-12-deficient mice also has little effect on the bacterial burden. These data suggest that IL-23 by itself does not play an essential role in the protective immune response to BCG infection; however, the presence of IL-23 can partially compensate for the absence of IL-12. Furthermore, neutralization of IL-23 or IL-17A does not increase susceptibility to mycobacterial BCG infection.


2021 ◽  
Author(s):  
Kathryn Wright ◽  
Kumudika de Silva ◽  
Karren M. Plain ◽  
Auriol C. Purdie ◽  
Warwick J. Britton ◽  
...  

AbstractRegulation of host microRNA (miRNA) expression is a contested node that controls the host immune response to mycobacterial infection. The host must overcome concerted subversive efforts of pathogenic mycobacteria to launch and maintain a protective immune response. Here we examine the role of miR-126 in the zebrafish model of Mycobacterium marinum infection and identify a protective role for this infection-induced miRNA through multiple effector pathways. Specifically, we analyse the impact of the miR-126 knockdown-induced tsc1a and cxcl12a/ccl2/ccr2 signalling axes during early host-M. marinum interactions. We find a strong detrimental effect of tsc1a upregulation that renders zebrafish embryos susceptible to higher bacterial burden and increased cell death despite dramatically higher recruitment of macrophages to the site of infection. We demonstrate that infection-induced miR-126 suppresses tsc1 and cxcl12a expression thus improving macrophage function early in infection, partially through activation of mTOR signalling and strongly through preventing the recruitment of Ccr2+ permissive macrophages, resulting in the recruitment of protective tnfa-expressing macrophages. Together our results demonstrate an important role for infection-induced miR-126 in shaping an effective immune response to M. marinum infection in zebrafish embryos.


2021 ◽  
Vol 12 ◽  
Author(s):  
Manikuntala Kundu ◽  
Joyoti Basu

Non-coding RNAs have emerged as critical regulators of the immune response to infection. MicroRNAs (miRNAs) are small non-coding RNAs which regulate host defense mechanisms against viruses, bacteria and fungi. They are involved in the delicate interplay between Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), and its host, which dictates the course of infection. Differential expression of miRNAs upon infection with M. tuberculosis, regulates host signaling pathways linked to inflammation, autophagy, apoptosis and polarization of macrophages. Experimental evidence suggests that virulent M. tuberculosis often utilize host miRNAs to promote pathogenicity by restricting host-mediated antibacterial signaling pathways. At the same time, host- induced miRNAs augment antibacterial processes such as autophagy, to limit bacterial proliferation. Targeting miRNAs is an emerging option for host-directed therapies. Recent studies have explored the role of long non-coding RNA (lncRNAs) in the regulation of the host response to mycobacterial infection. Among other functions, lncRNAs interact with chromatin remodelers to regulate gene expression and also function as miRNA sponges. In this review we attempt to summarize recent literature on how miRNAs and lncRNAs are differentially expressed during the course of M. tuberculosis infection, and how they influence the outcome of infection. We also discuss the potential use of non-coding RNAs as biomarkers of active and latent tuberculosis. Comprehensive understanding of the role of these non-coding RNAs is the first step towards developing RNA-based therapeutics and diagnostic tools for the treatment of TB.


1998 ◽  
Vol 66 (11) ◽  
pp. 5268-5274 ◽  
Author(s):  
LuAnn Thompson-Snipes ◽  
Emil Skamene ◽  
Danuta Radzioch

ABSTRACT Interleukin-12 (IL-12) is one of the first cytokines produced by macrophages, key mediators of innate resistance, during the host’s immune response to infections. Therefore, in this study we propose that IL-12 has an important role in the early phase of the immune response to Mycobacterium bovis BCG. IL-12 has been shown to enhance the maturation of protective Th1 cells and gamma interferon (IFN-γ) production during mycobacterial infection. Therefore, it may play a crucial role during the immune phase of infection as well. To examine the role of IL-12 in both the innate and the immune phase of infection, we compared BCG-resistant mice, B10.A (Bcgr ), to the susceptible congenic strain B10.A (Bcgs ) following administration of a blocking monoclonal antibody to IL-12 (10F6). Anti-IL-12-treated susceptible animals exhibited a two- to threefold increase in spleen CFU by day 21. In contrast, anti-IL-12 treatment had little or no effect on the response of the genetically resistant animals to infection. The B10.A (Bcgr ) but not the B10.A (Bcgs ) mice had an increase in IFN-γ mRNA relative to baseline levels as early as day 1 of infection irrespective of anti-IL-12 treatment. By day 14, B10.A (Bcgr ) mice showed a decrease in IFN-γ mRNA while the B10.A (Bcgs ) mice showed a significant increase in IFN-γ mRNA levels. Thus, during BCG infection, the B10.A (Bcgr ) mice mount an early IFN-γ response against BCG whereas the B10.A (Bcgs ) mice have a delayed IFN-γ response correlating with their genetic permissiveness expressed as an increased mycobacterial load by day 21. Overall, our data demonstrate that the inherent resistance of B10.A (Bcgr ) mice to mycobacteria does not depend on optimal levels of IL-12 to maintain effective control of the bacteria, whereas IL-12 is important for the susceptible animals’ response to BCG during the peak of infection.


2021 ◽  
Vol 11 ◽  
Author(s):  
Kunmei Liu ◽  
Dantong Hong ◽  
Fan Zhang ◽  
Xin Li ◽  
Meng He ◽  
...  

Autophagy is a key element of innate immune response against invading pathogens including Mycobacterium tuberculosis (M. tuberculosis). The emerging roles of microRNAs in regulating host antimicrobial responses against M. tuberculosis have gained widespread attention. However, the process by which miRNAs specifically influence antibacterial autophagy during mycobacterial infection is largely uncharacterized. In this study, we demonstrate a novel role of miR-106a in regulating macrophage autophagy against M. tuberculosis. H37Ra infection leads to downregulation of miR-106a in a time- and dose-dependent manner and concomitant upregulation of its three targets (ULK1, ATG7, and ATG16L1) in THP-1 macrophages. MiR-106a could inhibit autophagy activation and antimicrobial responses to M. tuberculosis by targeting ULK1, ATG7, and ATG16L1. Overexpression of miR-106a dramatically inhibited H37Ra-induced activation of autophagy in human THP-1 macrophages, whereas inhibitors of miR-106a remarkably promoted H37Ra-induced autophagy. The inhibitory effect of miR-106a on autophagy process during mycobacterial infection was also confirmed by Transmission Electron Microscope (TEM) observation. More importantly, forced expression of miR-106a increased mycobacterial survival, while transfection with miR-106a inhibitors attenuated the survival of intracellular mycobacteria. Taken together, these data demonstrated that miR-106a functioned as a negative regulator in autophagy and antimicrobial effects by targeting ULK1, ATG7, and ATG16L1 during M. tuberculosis infection, which may provide a potential target for developing diagnostic reagents or antibacterials against tuberculosis.


2020 ◽  
pp. 49-57
Author(s):  
S. V. Orlova ◽  
E. A. Nikitina ◽  
L. I. Karushina ◽  
Yu. A. Pigaryova ◽  
O. E. Pronina

Vitamin A (retinol) is one of the key elements for regulating the immune response and controls the division and differentiation of epithelial cells of the mucous membranes of the bronchopulmonary system, gastrointestinal tract, urinary tract, eyes, etc. Its significance in the context of the COVID‑19 pandemic is difficult to overestimate. However, a number of studies conducted in the past have associated the additional intake of vitamin A with an increased risk of developing cancer, as a result of which vitamin A was practically excluded from therapeutic practice in developed countries. Our review highlights the role of vitamin A in maintaining human health and the latest data on its effect on the development mechanisms of somatic pathology.


2019 ◽  
Vol 4 ◽  
pp. 21-23
Author(s):  
Purvish M. Parikh ◽  
T. P. Sahoo ◽  
Randeep Singh ◽  
Bahl Ankur ◽  
Talvar Vineet ◽  
...  

Response evaluation criteria in solid tumors (RECIST) are a method used to evaluate and document the response to cancer treatment in solid tumors. The availability of a new class of immuneoncology drugs has resulted in the need to modify RECIST criteria methodology. The first leadership immuno-oncology network (LION) master course brought together experts in oncology and immuno-oncology. Six questions were put to the experts and their opinion, supporting evidence, and experience were discussed to arrive at a practical consensus recommendation. n this nascent field, the availability of a practical consensus recommendation developed by experts in the field is of immense value to the community oncologist and other health-care consultants.


2019 ◽  
Vol 25 (27) ◽  
pp. 2909-2918 ◽  
Author(s):  
Joanna Giemza-Stokłosa ◽  
Md. Asiful Islam ◽  
Przemysław J. Kotyla

Background:: Ferritin is a molecule that plays many roles being the storage for iron, signalling molecule, and modulator of the immune response. Methods:: Different electronic databases were searched in a non-systematic way to find out the literature of interest. Results:: The level of ferritin rises in many inflammatory conditions including autoimmune disorders. However, in four inflammatory diseases (i.e., adult-onset Still’s diseases, macrophage activation syndrome, catastrophic antiphospholipid syndrome, and sepsis), high levels of ferritin are observed suggesting it as a remarkable biomarker and pathological involvement in these diseases. Acting as an acute phase reactant, ferritin is also involved in the cytokine-associated modulator of the immune response as well as a regulator of cytokine synthesis and release which are responsible for the inflammatory storm. Conclusion:: This review article presents updated information on the role of ferritin in inflammatory and autoimmune diseases with an emphasis on hyperferritinaemic syndrome.


2020 ◽  
Vol 16 (1) ◽  
pp. 18-27
Author(s):  
Manzoor M. Khan

Interstitial lung disease, a term for a group of disorders, causes lung fibrosis, is mostly refractory to treatments and has a high death rate. After diagnosis the survival is up to 3 years but in some cases the patients live much longer. It involves a heterogenous group of lung diseases that exhibit progressive and irreversible destruction of the lung due to the formation of scars. This results in lung malfunction, disruption of gas exchange, and eventual death because of respiratory failure. The etiology of lung fibrosis is mostly unknown with a few exceptions. The major characteristics of the disease are comprised of injury of epithelial type II cells, increased apoptosis, chronic inflammation, monocytic and lymphocytic infiltration, accumulation of myofibroblasts, and inability to repair damaged tissue properly. These events result in abnormal collagen deposition and scarring. The inflammation process is mild, and the disease is primarily fibrotic driven. Immunosuppressants do not treat the disease but the evidence is evolving that both innate and acquired immune responses a well as the cytokines contribute to at least early progression of the disease. Furthermore, mediators of inflammation including cytokines are involved throughout the process of lung fibrosis. The diverse clinical outcome of the disease is due to different pattern of inflammatory markers. Nonetheless, the development of novel therapeutic strategies requires better understanding of the role of the immune response. This review highlights the role of the immune response in interstitial lung disease and considers the therapeutic strategies based on these observations. For this review several literature data sources were used to assess the role of the immune response in interstitial lung disease and to evaluate the possible therapeutic strategies for the disease.


Sign in / Sign up

Export Citation Format

Share Document