Environmentally Relevant Concentrations of TiO2 Nanoparticles Affected Cell Viability and Photosynthetic Yield in the Chlorophyceae Scenedesmus bijugus

2016 ◽  
Vol 227 (12) ◽  
Author(s):  
Daniela Mariano Barreto ◽  
Ana Teresa Lombardi
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Javier Morán-Martínez ◽  
Roberto Beltrán del Río-Parra ◽  
Nadia Denys Betancourt-Martínez ◽  
Rubén García-Garza ◽  
Joel Jiménez-Villarreal ◽  
...  

For the EPD, different voltages and different times were used. Male rats were used in four groups (n=3) with different treatments. The blood sample was obtained for genotoxic analysis and liver and kidney organs were removed for histopathological analysis. The amount of NPs TiO2 deposited on the samples of the arches increases gradually in the times of 15 and 30 s. At all voltages, however, at 45, 60, 75, and 90 s, there is an increase up to 25 V. Cell viability in lymphocytes treated with TiO2 NPs did not cause genotoxicity. In the histopathological findings of hepatic and renal tissue, nuclear alterations and necrosis were observed. The objective of the study was to improve the physical and biocompatibility characteristics of the NiTi arches for which the EPD is used. The technique for the deposition of TiO2 NPs was used, where this technique could be used as an economical and versatile way to perform homogeneous depositions even on surfaces with the complexity of the NiTi alloy. As for genotoxicity and cytotoxicity, we continue to have controversial results.


2020 ◽  
Vol 5 (2) ◽  
pp. 86
Author(s):  
Ardhianing Hardita ◽  
Titik Ismiyati ◽  
Endang Wahyuningtyas

Denture base material should have a good level of biocompatibility. Acrylic resin is frequently used as a denture base material, however it has a disadvantage of producing residual monomer. Residual monomer is known to have a cytotoxicity effect. Titanium dioxide (TiO2) nanoparticles are used as fillers due to their biocompatibility and ability to enhance the mechanical properties of acrylic resin. The addition of the material to acrylic resin could affect the amount of residual monomer. The aim of this study was to examine the effect of the addition of TiO2 nanoparticles as acrylic resin denture base filler on the cytotoxicity in fibroblast cells. The samples consisted of 24 heat cured acrylic resins in disc shape (5 mm in diameter and 2 mm in thickness), divided into 4 groups (n = 6): three groups given treatment with0.5%, 1%, 2% TiO2, respectively and one control group. Cell viability was measured with MTT assay. The results were tested with one way ANOVA with 95% confidence level followed by LSD post hoc test. The results showed that the highest percentage of cell viability was found in the treatment group of 0.5% TiO2 with value of 91.83 ± 1.75%, while the lowest value was seen in the treatment group of 2% TiO2 with value of 79.38 ± 3.34%. Significant differences were shown between the treatment groups of 0.5% and 2% TiO2, as well as between the control and treatment group with 2% TiO2. The conclusions of this research are the addition of TiO2 nanoparticles as acrylic resin denture base filler has an effect on cytotoxicity; the addition of 0.5% TiO2 nanoparticles filler results in lower cytotoxicity on fibroblast cells compared to the addition of 1% and 2% TiO2.  


2014 ◽  
Vol 84 (3-4) ◽  
pp. 0140-0151 ◽  
Author(s):  
Thilaga Rati Selvaraju ◽  
Huzwah Khaza’ai ◽  
Sharmili Vidyadaran ◽  
Mohd Sokhini Abd Mutalib ◽  
Vasudevan Ramachandran ◽  
...  

Glutamate is the major mediator of excitatory signals in the mammalian central nervous system. Extreme amounts of glutamate in the extracellular spaces can lead to numerous neurodegenerative diseases. We aimed to clarify the potential of the following vitamin E isomers, tocotrienol-rich fraction (TRF) and α-tocopherol (α-TCP), as potent neuroprotective agents against glutamate-induced injury in neuronal SK-N-SH cells. Cells were treated before and after glutamate injury (pre- and post-treatment, respectively) with 100 - 300 ng/ml TRF/α-TCP. Exposure to 120 mM glutamate significantly reduced cell viability to 76 % and 79 % in the pre- and post-treatment studies, respectively; however, pre- and post-treatment with TRF/α-TCP attenuated the cytotoxic effect of glutamate. Compared to the positive control (glutamate-injured cells not treated with TRF/α-TCP), pre-treatment with 100, 200, and 300 ng/ml TRF significantly improved cell viability following glutamate injury to 95.2 %, 95.0 %, and 95.6 %, respectively (p < 0.05).The isomers not only conferred neuroprotection by enhancing mitochondrial activity and depleting free radical production, but also increased cell viability and recovery upon glutamate insult. Our results suggest that vitamin E has potent antioxidant potential for protecting against glutamate injury and recovering glutamate-injured neuronal cells. Our findings also indicate that both TRF and α-TCP could play key roles as anti-apoptotic agents with neuroprotective properties.


Planta Medica ◽  
2014 ◽  
Vol 80 (16) ◽  
Author(s):  
J Poças ◽  
M Lemos ◽  
C Cabral ◽  
C Cavaleiro ◽  
MT Cruz ◽  
...  

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
A Hussain ◽  
M Grootveld ◽  
R Arroo ◽  
K Beresford ◽  
K Ruparelia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document