In vitro and in vivo application of active compounds with anti-yeast activity to improve the shelf life of ready-to-eat table grape

2013 ◽  
Vol 29 (6) ◽  
pp. 1075-1084 ◽  
Author(s):  
Costa Cristina ◽  
Lucera Annalisa ◽  
Conte Amalia ◽  
Contò Francesco ◽  
Matteo Alessandro Del Nobile
2021 ◽  
Vol 18 ◽  
Author(s):  
Jagseer Singh ◽  
Pooja A Chawla ◽  
Rohit Bhatia ◽  
Shamsher Singh

: The present work reports synthesis and screening of fifteen 2,5-disubstituted-4-thiazolidinones with different substitutions of varied arylidene groups at imino. The structures of the compounds were confirmed by spectral characterization. The compounds were subjected to in vivo anti-inflammatory and in vitro antioxidant activities. The derivatives possessed remarkable activities quite close to standard drugs used. Unlike conventional non-selective NSAIDs, the synthesized compounds did not contain any acidic group, thereby ensuring a complete cure from ulcers. To further substantiate the claim for safer derivatives, the active compounds were docked against the cyclooxygenase (COX)-2 enzyme. It was found that 4-fluorophenylimino substituent at 2- position and 3-nitro moiety on a 5-benzylidene nucleus of the 4-thiazolidinone derivative fitted in the COX-2 binding pocket. The compounds exhibited remarkable activity in scavenging free radicals, as depicted by the DPPH assay method. The structure-activity relationship was also established in the present work with respect to the nature and position of the substituents. The active compounds were evaluated for drug-like nature under Lipinski’s rule of five, and the toxicity behaviour of active compounds was predicted using ADMETlab software. The compounds have the potential to target degenerative disorders associated with inflammation and the generation of free radicals.


2015 ◽  
Vol 11 (7) ◽  
pp. 821-827 ◽  
Author(s):  
Yunus Ahmed ◽  
Zahira Yaakob ◽  
Parul Akhtar ◽  
Mahbubur Rahman ◽  
Faridul Islam

Author(s):  
A. Di Francesco ◽  
J. Zajc ◽  
N. Gunde-Cimerman ◽  
E. Aprea ◽  
F. Gasperi ◽  
...  

Abstract Aureobasidium strains isolated from diverse unconventional environments belonging to the species A. pullulans, A. melanogenum, and A. subglaciale were evaluated for Volatile Organic Compounds (VOCs) production as a part of their modes of action against Botrytis cinerea of tomato and table grape. By in vitro assay, VOCs generated by the antagonists belonging to the species A. subglaciale showed the highest inhibition percentage of the pathogen mycelial growth (65.4%). In vivo tests were conducted with tomatoes and grapes artificially inoculated with B. cinerea conidial suspension, and exposed to VOCs emitted by the most efficient antagonists of each species (AP1, AM10, AS14) showing that VOCs of AP1 (A. pullulans) reduced the incidence by 67%, partially confirmed by the in vitro results. Conversely, on table grape, VOCs produced by all the strains did not control the fungal incidence but were only reducing the infection severity (< 44.4% by A. pullulans; < 30.5% by A. melanogenum, and A. subglaciale). Solid-phase microextraction (SPME) and subsequent gas chromatography coupled to mass spectrometry identified ethanol, 3-methyl-1-butanol, 2-methyl-1-propanol as the most produced VOCs. However, there were differences in the amounts of produced VOCs as well as in their repertoire. The EC50 values of VOCs for reduction of mycelial growth of B. cinerea uncovered 3-methyl-1-butanol as the most effective compound. The study demonstrated that the production and the efficacy of VOCs by Aureobasidium could be directly related to the specific species and pathosystem and uncovers new possibilities for searching more efficient VOCs producing strains in unconventional habitats other than plants.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1127
Author(s):  
Massimo Fresta ◽  
Antonia Mancuso ◽  
Maria Chiara Cristiano ◽  
Konrad Urbanek ◽  
Felisa Cilurzo ◽  
...  

The topical administration of active compounds represents an advantageous strategy to reach the various skin components as well as its appendages. Pilosebaceous follicles are skin appendages originating in the deeper skin layers. They are very difficult to target, and hence higher active dosages are generally required to achieve effective biological responses, thus favoring the rise of side effects. The aim of this work was to design a supramolecular colloidal carrier, i.e., a liquid crystal nanocarrier, for the selective delivery of active compounds into the pilosebaceous follicle. This nanocarrier showed mean sizes of ~80 nm, a good stability, a negative surface charge, and great safety properties. In vitro studies highlighted its ability to contain and release different substances and to successfully permeate the skin. Minoxidil was encapsulated in the nanocarriers and the in vivo biological effect was compared with a conventional dosage form. Minoxidil-loaded liquid crystal nanocarrier was able to selectively reach the pilosebaceous follicle, thus allowing an increased biological effectiveness of the delivered active in terms of biological response, duration of the biological effects, and reduction of collaterals. Our investigation showed that liquid crystal nanocarriers represent a promising device for the treatment of different pilosebaceous follicular impairments/diseases.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Xinyi Lu ◽  
Xingli Wu ◽  
Lin Jing ◽  
Lingjia Tao ◽  
Yingxuan Zhang ◽  
...  

Objective. To analyze the active compounds, potential targets, and diseases of JianPi Fu Recipe (JPFR) based on network pharmacology and bioinformatics and verify the potential biological function and mechanism of JPFR in vitro and in vivo. Methods. Network pharmacology databases including TCMSP, TCM-PTD, TCMID, and DrugBank were used to screen the active compounds and potential drug targets of JPFR. Cytoscape 3.7 software was applied to construct the interaction network between active compounds and potential targets. The DAVID online database analysis was performed to investigate the potential effective diseases and involved signaling pathways according to the results of the GO function and KEGG pathways enrichment analysis. To ensure standardization and maintain interbatch reliability of JPFR, High Performance Liquid Chromatography (HPLC) was used to establish a “chemical fingerprint.” For biological function validation, the effect of JPFR on the proliferation and migration of CRC cells in vitro was investigated by CCK-8 and transwell and wound healing assay, and the effect of JPFR on the growth and metastasis of CRC cells in vivo was detected by building a lung metastasis model in nude mice and in vivo imaging. For the potential mechanism validation, the expressions of MALAT1, PTBP-2, and β-catenin in CRC cells and transplanted CRC tumors were detected by real-time PCR, western blot, and immunohistochemical staining analysis. Results. According to the rules of oral bioavailability (OB) > 30% and drug-likeness (DL) > 0.18, 244 effective compounds in JPFR were screened out, as well as the corresponding 132 potential drug targets. By the analysis of DAVID database, all these key targets were associated closely with the cancer diseases such as prostate cancer, colorectal cancer, bladder cancer, small cell lung cancer, pancreatic cancer, and hepatocellular carcinoma. In addition, multiple signaling pathways were closely related to JPFR, including p53, Wnt, PI3K-Akt, IL-17, HIF-1, p38-MAPK, NF-κB, PD-L1 expression and PD-1 checkpoint pathway, VEGF, JAK-STAT, and Hippo. The systematical analysis showed that various active compounds of JPFR were closely connected with Wnt/β-catenin, EGFR, HIF-1, TGFβ/Smads, and IL6-STAT3 signaling pathway, including kaempferol, isorhamnetin, calycosin, quercetin, medicarpin, phaseol, spinasterol, hederagenin, beta-sitosterol, wighteone, luteolin, and isotrifoliol. For in vitro experiments, the migration and growth of human CRC cells were inhibited by the JPFR extract in a dose-dependent way, and the expression of MALAT1, PTBP-2, β-catenin, MMP7, c-Myc, and Cyclin D1 in CRC cells were downregulated by the JPFR extract in a dose-dependent way. For in vivo metastasis experiments, the numbers of lung metastasis were found to be decreased by the JPFR extract in a dose-dependent manner, and the expressions of metastasis-associated genes including MALAT1, PTBP-2, β-catenin, and MMP7 in the lung metastases were downregulated dose dependently by the JPFR extract. For the orthotopic transplanted tumor experiments, the JPFR extract could inhibit the growth of orthotopic transplanted tumors and downregulate the expression of c-Myc and Cyclin D1 in a dose-dependent manner. Moreover, the JPFR extract could prolong the survival time of tumor-bearing mice in a dose-dependent manner. Conclusions. Through effective network pharmacology analysis, we found that JPFR contains many effective compounds which may directly target cancer-associated signaling pathways. The in vitro and in vivo experiments further confirmed that JPFR could inhibit the growth and metastasis of CRC cells by regulating β-catenin signaling-associated genes or proteins.


Planta Medica ◽  
2014 ◽  
Vol 80 (06) ◽  
pp. 482-489 ◽  
Author(s):  
Raymond Muganga ◽  
Luc Angenot ◽  
Monique Tits ◽  
Michel Frédérich

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhenwei Lan ◽  
Ying Zhang ◽  
Yue Sun ◽  
Lvhong Wang ◽  
Yuting Huang ◽  
...  

Recent studies concerning products that originate from natural plants have sought to clarify active ingredients, which both explains the mechanisms of the function and aids in quality control during production. As a traditional functional plant, Curcumae Rhizoma (CR) has been proven to be effective in promoting blood circulation and removing blood stasis. However, the components that play a role in its huge compound library are still unclear. The present study aimed to develop a high-throughput screening method to identify thrombin inhibitors in CR and validate them by in vitro and in vivo experiments. The effect of CR on thrombin in HUVECs cells was determined by ELISA, then an affinity-ultrafiltration-UPLC-Q-Exactive Orbitrap/MS approach was applied. Agatroban and adenosine were used as positive and negative drugs respectively to verify the reliability of the established method. The in vitro activity of the compounds was determined by specific substrate S-2238. The in vivo effect of the active ingredients was determined using zebrafish. Molecular docking was used to understand the internal interactions between compounds and enzymes. ELISA results showed that CR had an inhibitory effect on thrombin. The screening method established in this paper is reliable, by which a total of 15 active compounds were successfully identified. This study is the first to report that C7, 8, and 11 have in vitro thrombin-inhibitory activity and significantly inhibit thrombosis in zebrafish models at a safe dose. Molecular docking studies were employed to analyze the possible active binding sites, with the results suggesting that compound 16 is likely a better thrombin inhibitor compared with the other compounds. Based on the affinity-ultrafiltration-UPLC-Q-Exactive Orbitrap/MS approach, a precisely targeted therapy method using bio-active compounds from CR might be successfully established, which also provides a valuable reference for targeted therapy, mechanism exploration, and the quality control of traditional herbal medicine.


2018 ◽  
Author(s):  
María Fernanda Jiménez-Reyes ◽  
Héctor Carrasco ◽  
Andrés Olea ◽  
Evelyn Silva-Moreno

Fungi are the primary infectious agents in plants causing significant economic losses in agroindustry. Traditionally, these pathogens have been treated with different synthetic fungicides such as hydroxianilides, anilinopyrimidines, and azoles, to name a few. However, the indiscriminate use of these chemicals has increased fungi resistance in plants. Natural products have been researched as a control, and an alternative to these synthetic fungicides since they are not harmful to health and contribute to the environment caring. This review describes plants extracts, essential oils, and active compounds or secondary metabolites as antifungal agents both, in vitro and in vivo. Active compounds have been recently described as the best candidates for the control of phytopathogenic fungi. When metabolized by plants, these compounds concentrations rely on the environmental conditions and pathogens incidence. However, one issue regarding the direct application of these preformed compounds in plants touch upon their low persistence in the environment, and their even lower bioavailability than synthetic fungicides. Hence the challenge is to develop useful formulations based on natural products to increase the compounds solubility facilitating thus their application in the field while maintaining their properties.


Author(s):  
Samira Makanjuola ◽  
Olajuwon Okubena ◽  
Louis Ajonuma ◽  
Adedoyin Dosunmu ◽  
Solomon Umukoro ◽  
...  

The West-African variety of&nbsp;Sorghum bicolor&nbsp;leaf sheath (SBLS) Jobelyn&reg;&nbsp;is a natural remedy,&nbsp;which has gained international recognition for its anti-anemic effect and energy boosting qualities in debilitating diseases.&nbsp;The widespread use of traditional medicine in the region usually confirms its safety, but not its efficacy or deep assessment of their pharmacological properties. The other major issue for herbal-based treatments is the lack of definite and complete information about the composition of the extracts.&nbsp;&nbsp;Despite limitations, efforts have been made in isolation and characterisation of active compounds in this specie of&nbsp;sorghum&nbsp;showing various&nbsp;subclasses of flavonoids including apigeninidin, a stable 3-deoxyanthocyanidin and potential fungal growth inhibitor, which accounts for 84% of the total extract.&nbsp;Non-clinical in vitro and in vivo studies support previous indications that this variety of&nbsp;Sorghum bicolor&nbsp;possesses several biologically active compounds with potent antioxidant, anti-inflammatory, anti-aging and neuro-protective properties.&nbsp; Clinical studies show that&nbsp;SBLS has the ability&nbsp;to boost&nbsp;hemoglobin concentrations in anemic conditions and most remarkably to increase CD4 count in HIV-positive patients. The multiple effects and high safety profiles of this extract may encourage its development as a therapeutic agent for the treatment of anemia, chronic inflammatory conditions or in the symptomatic management of HIV infections.&nbsp;This review describes&nbsp;the potential therapeutic aspects&nbsp;of SBLS extract&nbsp;and its potential benefits.


2021 ◽  
Vol 48 (3) ◽  
Author(s):  
Dian Laila Purwaningroom ◽  
◽  
Sholihatul Maghfirah ◽  
Muhaimin Rifai ◽  
Widodo ◽  
...  

Traditionally, noni (Morinda citrifolia L.) has been used to treat hypertension in tropical countries. The noni extract was proven to reduce blood pressure and relatively safe to the liver and kidney in the animal model. This extract could inhibit angiotensin-converting enzyme (ACE) and plays a pivotal role in controlling blood pressure. However, the active compound of the extract that has function as the ACE inhibitor is still unknown. Therefore, the objective of this study was to examine the mechanism of anti-hypertension of noni methanol extract as well as its active compound that acts as the ACE inhibitor by using a bioinformatics approach. An enzyme activity analysis showed that noni methanol extract inhibits ACE activity based on a dose-dependent manner. Further analysis using bioinformatic analysis suggested that three active compounds of Morinda citrifolia, namely linoleic acid, palmitate, and oleic acid, might be bound to PPARA and NOS3 protein. The two targeted protein is predicted as a regulator of blood pressure through the PPARA pathway. The findings showed that M. citrifolia has numerous active compounds containing multiple protein targets, which regulate blood pressure. However, in vitro and in vivo research should be conducted to provide evidence for the mechanism.


Sign in / Sign up

Export Citation Format

Share Document