Polyaniline–Cadmium Ferrite Nanostructured Composite for Room-Temperature Liquefied Petroleum Gas Sensing

2017 ◽  
Vol 46 (8) ◽  
pp. 5240-5247 ◽  
Author(s):  
S. Kotresh ◽  
Y. T. Ravikiran ◽  
S. K. Tiwari ◽  
S. C. Vijaya Kumari
2012 ◽  
Vol 166-167 ◽  
pp. 281-291 ◽  
Author(s):  
Satyendra Singh ◽  
B.C. Yadav ◽  
Poonam Tandon ◽  
Mridula Singh ◽  
Anuj Shukla ◽  
...  

2020 ◽  
Vol 1 (1) ◽  
pp. 98-114
Author(s):  
Hongping Liang ◽  
Huiyun Hu ◽  
Jianqiang Wang ◽  
Hao Li ◽  
Nicolaas Frans de Rooij ◽  
...  

Gas sensing materials essentially dominate the performances of the gas sensors which are widely applied in environmental monitoring, industrial production and medical diagnosis. However, most of the traditional gas sensing materials show excellent performances only at high operating temperatures, which are high energy consumptive and have potential issues in terms of reliability and safety of the sensors. Therefore, the development of Room Temperature (RT) gas sensing materials becomes a research hotspot in this field. In recent years, graphene-based materials have been studied as a class of promising RT gas sensing materials because graphene has a unique twodimensional (2D) structure with high electron mobility and superior feasibility of assembling with other “guest components” (mainly small organic molecules, macromolecules and nanoparticles). More interestingly, its electrical properties become even more sensitive toward gas molecules at RT after surface modification. In this review, we have summarized the recently reported graphenebased RT gas sensing materials for the detection of NO<sub>2</sub>, H<sub>2</sub>S, NH<sub>3</sub>, CO<sub>2</sub>, CO, SO<sub>2</sub>, Volatile Organic Compounds (VOCs) (i.e. formaldehyde, acetone, toluene, ethanol), as well as Liquefied Petroleum Gas (LPG) and highlighted the latest researches with respect to supramolecular modification of graphene for gas sensing. The corresponding structural features and gas sensing mechanisms of the graphene-based gas sensors have also been generalized.


2017 ◽  
Vol 709 ◽  
pp. 92-103 ◽  
Author(s):  
A.C. Lokhande ◽  
A.A. Yadav ◽  
JuYeon Lee ◽  
Mingrui He ◽  
S.J. Patil ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1360
Author(s):  
Qiaohua Feng ◽  
Huanhuan Zhang ◽  
Yunbo Shi ◽  
Xiaoyu Yu ◽  
Guangdong Lan

A sensor operating at room temperature has low power consumption and is beneficial for the detection of environmental pollutants such as ammonia and benzene vapor. In this study, polyaniline (PANI) is made from aniline under acidic conditions by chemical oxidative polymerization and doped with tin dioxide (SnO2) at a specific percentage. The PANI/SnO2 hybrid material obtained is then ground at room temperature. The results of scanning electron microscopy show that the prepared powder comprises nanoscale particles and has good dispersibility, which is conducive to gas adsorption. The thermal decomposition temperature of the powder and its stability are measured using a differential thermo gravimetric analyzer. At 20 °C, the ammonia gas and benzene vapor gas sensing of the PANI/SnO2 hybrid material was tested at concentrations of between 1 and 7 ppm of ammonia and between 0.4 and 90 ppm of benzene vapor. The tests show that the response sensitivities to ammonia and benzene vapor are essentially linear. The sensing mechanisms of the PANI/SnO2 hybrid material to ammonia and benzene vapors were analyzed. The results demonstrate that doped SnO2 significantly affects the sensitivity, response time, and recovery time of the PANI material.


2021 ◽  
Vol 332 ◽  
pp. 129493
Author(s):  
Jae-Hun Kim ◽  
Jin-Young Kim ◽  
Ali Mirzaei ◽  
Hyoun Woo Kim ◽  
Sang Sub Kim

Author(s):  
Tianding CHEN ◽  
Wenhao YAN ◽  
Ying WANG ◽  
Jinli Li ◽  
Haibo Hu ◽  
...  

Nitrogen dioxide (NO2) is a prominent air pollutant that is harmful to both the environment and human health. Conventional NO2 sensors that are designed to operate at room temperature often...


2021 ◽  
Vol 6 (32) ◽  
pp. 8338-8344
Author(s):  
Xingyan Shao ◽  
Shuo Wang ◽  
Leqi Hu ◽  
Tingting Liu ◽  
Xiaomei Wang ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2123
Author(s):  
Ming Liu ◽  
Caochuang Wang ◽  
Pengcheng Li ◽  
Liang Cheng ◽  
Yongming Hu ◽  
...  

Many low-dimensional nanostructured metal oxides (MOXs) with impressive room-temperature gas-sensing characteristics have been synthesized, yet transforming them into relatively robust bulk materials has been quite neglected. Pt-decorated SnO2 nanoparticles with 0.25–2.5 wt% Pt were prepared, and highly attractive room-temperature hydrogen-sensing characteristics were observed for them all through pressing them into pellets. Some pressed pellets were further sintered over a wide temperature range of 600–1200 °C. Though the room-temperature hydrogen-sensing characteristics were greatly degraded in many samples after sintering, those samples with 0.25 wt% Pt and sintered at 800 °C exhibited impressive room-temperature hydrogen-sensing characteristics comparable to those of their counterparts of as-pressed pellets. The variation of room-temperature hydrogen-sensing characteristics among the samples was explained by the facts that the connectivity between SnO2 grains increases with increasing sintering temperature, and Pt promotes oxidation of SnO2 at high temperatures. These results clearly demonstrate that some low-dimensional MOX nanocrystals can be successfully transformed into bulk MOXs with improved robustness and comparable room-temperature gas-sensing characteristics.


Sign in / Sign up

Export Citation Format

Share Document