SnS2/MXene derived TiO2 hybrid for ultra-fast room temperature NO2 gas sensing

Author(s):  
Tianding CHEN ◽  
Wenhao YAN ◽  
Ying WANG ◽  
Jinli Li ◽  
Haibo Hu ◽  
...  

Nitrogen dioxide (NO2) is a prominent air pollutant that is harmful to both the environment and human health. Conventional NO2 sensors that are designed to operate at room temperature often...

2014 ◽  
Vol 5 ◽  
pp. 910-918 ◽  
Author(s):  
Prasantha R Mudimela ◽  
Mattia Scardamaglia ◽  
Oriol González-León ◽  
Nicolas Reckinger ◽  
Rony Snyders ◽  
...  

Vertically aligned carbon nanotubes of different lengths (150, 300, 500 µm) synthesized by thermal chemical vapor deposition and decorated with gold nanoparticles were investigated as gas sensitive materials for detecting nitrogen dioxide (NO2) at room temperature. Gold nanoparticles of about 6 nm in diameter were sputtered on the top surface of the carbon nanotube forests to enhance the sensitivity to the pollutant gas. We showed that the sensing response to nitrogen dioxide depends on the nanotube length. The optimum was found to be 300 µm for getting the higher response. When the background humidity level was changed from dry to 50% relative humidity, an increase in the response to NO2 was observed for all the sensors, regardless of the nanotube length.


2015 ◽  
Vol 29 (06n07) ◽  
pp. 1540032 ◽  
Author(s):  
Sanjay Chakane ◽  
Ashok Datir ◽  
Pankaj Koinkar

Copper phthalocyanine ( CuPc ) is synthesized chemically and used for making CuPc thin films using spin coating technique. Films were prepared from trifluroacetic acid (TFA) and chlorobenzene mixed solution on the glass substrate. Spin coated films of unsubstituted CuPc films were heat annealed at 150°C for 2 h duration and were used to study NO 2 gas sensing characteristics. α-phase of CuPc is noted by UV-visible absorption spectra. IR spectra of undoped CuPc films and doped CuPc films with NO 2 revealed that, doping of nitrogen dioxide modifies and deletes some of the bands. The effect of NO 2 at various concentrations from 50 ppm to 500 ppm in atmospheric air at room temperature on the electrical conductivity of CuPc films was studied. Sensitivity, response time and repeatability of the CuPc sensor were discussed in this paper.


2021 ◽  
pp. 94-103

Since human beings spend 80-90% of the day inside houses, educational and recreation centers, office blocks, or automobiles, the quality of air within these buildings or structures is crucial for human health and safety. Hence, indoor air quality (IAQ) highlights the general characteristics of indoor air that affect the state of health, thermal comfort, and well-being of humans. Despite numerous regulatory standards, framework policies, and monitoring plans proposed for IAQ, the occurrence of indoor pollutants including radon (Rn), ozone (O3), and oxides of carbon, sulfur, and nitrogen have become common. Many studies contend that nitrogen dioxide (NO2) is a major indoor air pollutant and one of the most poisonous on Earth. It is a reddish-brown gas generated from the oxidation of nitrogen oxides (NOx) and molecular oxygen or O3 or the high-temperature combustion of solid fuels. This paper presents an overview of the potential sources, formation routes, and health effects of NO2. According to reviewed literature, the occurrence, concentrations, and ratios of NO2 in the indoor environment are affected by residential factors, weather/climate, and proximity to NO2 sources indoors, such as burners, ovens, and stoves. Furthermore, long-term exposure to NO2 causes diabetes, heart, cardiovascular, hypertension diseases, severe cough, hemoptysis, pediatric lung edema and, more recently, fatalities arising from COVID-19. Therefore, the overdependence on polluting fuels that generate NO2 must be minimized or eliminated to improve IAQ and protect human health, safety, and the environment. Future design plans for constructing kitchens, homes, offices, automobiles, factories, and power plants must incorporate smart sensors or ventilation systems for detecting, monitoring, or removal of exhaust gases, including NO2.


2008 ◽  
Vol 59 (10) ◽  
Author(s):  
Delia Perju ◽  
Harieta Pirlea ◽  
Gabriela-Alina Brusturean ◽  
Dana Silaghi-Perju ◽  
Sorin Marinescu

The European laws and recently the Romanian ones impose more and more strict norms to the large nitrogen dioxide polluters. They are obligated to continuously improve the installations and products so that they limit and reduce the nitrogen dioxide pollution, because it has negative effects on the human health and environment. In this paper are presented these researches made within a case study for the Timi�oara municipality, regarding the modeling and simulation of the nitrogen dioxide dispersion phenomenon coming from various sources in atmosphere with the help of analytical-experimental methods. The mathematical model resulting from these researches is accurately enough to describe the real situation. This was confirmed by comparing the results obtained based on the model with real experimental values.


Nano Express ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 010003 ◽  
Author(s):  
Anwesha Mukherjee ◽  
Leela R Jaidev ◽  
Kaushik Chatterjee ◽  
Abha Misra

2014 ◽  
Vol 70 (a1) ◽  
pp. C984-C984
Author(s):  
Alessia Bacchi ◽  
Davide Capucci ◽  
Paolo Pelagatti

The objective of this work is to embed liquid or volatile pharmaceuticals inside crystalline materials, in order to tune their delivery properties in medicine or agrochemistry, and to explore new regulatory and intellectual properties issues. Liquid or volatile formulations of active pharmaceutical ingredients (APIs) are intrinsically less stable and durable than solid forms; in fact most drugs are formulated as solid dosage because they tend to be stable, reproducible, and amenable to purification. Most drugs and agrochemicals are manufactured and distributed as crystalline materials, and their action involves the delivery of the active molecule by a solubilization process either in the body or on the environment. However some important compounds for the human health or for the environment occur as liquids at room temperature. The formation of co-crystals has been demonstrated as a means of tuning solubility properties of solid phases, and therefore it is widely investigated by companies and by solid state scientists especially in the fields of pharmaceuticals, agrochemicals, pigments, dyestuffs, foods, and explosives. In spite of this extremely high interest towards co-crystallization as a tool to alter solubility, practically no emphasis has been paid to using it as a means to stabilize volatile or labile or low-melting products. In this work we trap and stabilize volatile and liquid APIs and agrochemicals in crystalline matrices by engineering suitable co-crystals. These new materials alter the physic state of the active ingredients allowing to expand the phase space accessible to manufacturing and delivery. We have defined a benchmark of molecules relevant to human health and environment that have been combined with suitable partners according to the well known methods of crystal engineering in order to obtain cocrystals. The first successful results will be discussed; the Figure shows a cocrystal of propofol, a worldwide use anesthetic.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1360
Author(s):  
Qiaohua Feng ◽  
Huanhuan Zhang ◽  
Yunbo Shi ◽  
Xiaoyu Yu ◽  
Guangdong Lan

A sensor operating at room temperature has low power consumption and is beneficial for the detection of environmental pollutants such as ammonia and benzene vapor. In this study, polyaniline (PANI) is made from aniline under acidic conditions by chemical oxidative polymerization and doped with tin dioxide (SnO2) at a specific percentage. The PANI/SnO2 hybrid material obtained is then ground at room temperature. The results of scanning electron microscopy show that the prepared powder comprises nanoscale particles and has good dispersibility, which is conducive to gas adsorption. The thermal decomposition temperature of the powder and its stability are measured using a differential thermo gravimetric analyzer. At 20 °C, the ammonia gas and benzene vapor gas sensing of the PANI/SnO2 hybrid material was tested at concentrations of between 1 and 7 ppm of ammonia and between 0.4 and 90 ppm of benzene vapor. The tests show that the response sensitivities to ammonia and benzene vapor are essentially linear. The sensing mechanisms of the PANI/SnO2 hybrid material to ammonia and benzene vapors were analyzed. The results demonstrate that doped SnO2 significantly affects the sensitivity, response time, and recovery time of the PANI material.


2021 ◽  
Vol 332 ◽  
pp. 129493
Author(s):  
Jae-Hun Kim ◽  
Jin-Young Kim ◽  
Ali Mirzaei ◽  
Hyoun Woo Kim ◽  
Sang Sub Kim

2021 ◽  
Vol 6 (32) ◽  
pp. 8338-8344
Author(s):  
Xingyan Shao ◽  
Shuo Wang ◽  
Leqi Hu ◽  
Tingting Liu ◽  
Xiaomei Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document