Investigation on Mechanical Properties and Equivalent Model of Aluminum Honeycomb Sandwich Panels

2018 ◽  
Vol 27 (12) ◽  
pp. 6585-6596 ◽  
Author(s):  
Liangcai Cai ◽  
Duoyao Zhang ◽  
Shaohui Zhou ◽  
Wei Xu
2013 ◽  
Vol 2013 ◽  
pp. 1-20 ◽  
Author(s):  
Chang Qi ◽  
Shu Yang ◽  
Dong Wang ◽  
Li-Jun Yang

The dynamic responses of honeycomb sandwich panels (HSPs) subjected to in-plane projectile impact were studied by means of explicit nonlinear finite element simulations using LS-DYNA. The HSPs consisted of two identical aluminum alloy face-sheets and an aluminum honeycomb core featuring three types of unit cell configurations (regular, rectangular-shaped, and reentrant hexagons). The ballistic resistances of HSPs with the three core configurations were first analyzed. It was found that the HSP with the reentrant auxetic honeycomb core has the best ballistic resistance, due to the negative Poisson’s ratio effect of the core. Parametric studies were then carried out to clarify the influences of both macroscopic (face-sheet and core thicknesses, core relative density) and mesoscopic (unit cell angle and size) parameters on the ballistic responses of the auxetic HSPs. Numerical results show that the perforation resistant capabilities of the auxetic HSPs increase as the values of the macroscopic parameters increase. However, the mesoscopic parameters show nonmonotonic effects on the panels' ballistic capacities. The empirical equations for projectile residual velocities were formulated in terms of impact velocity and the structural parameters. It was also found that the blunter projectiles result in higher ballistic limits of the auxetic HSPs.


2018 ◽  
Vol 25 (4) ◽  
pp. 797-805 ◽  
Author(s):  
R.S. Jayaram ◽  
V.A. Nagarajan ◽  
K.P. Vinod Kumar

Abstract Honeycomb sandwich panels entice continuously enhanced attention due to its excellent mechanical properties and multi-functional applications. However, the principal problem of sandwich panels is failure by face/core debond. Novel lightweight sandwich panels with hybrid core made of honeycomb, foam and through-thickness pin was developed. Reinforcing polyester pins between faces and core is an effectual way to strengthen the core and enhance the interfacial strength between the face/core to improve the structural performance of sandwich panels. To provide feasibility for pin reinforcement, honeycomb core was pre-filled with foam. Mechanical properties enhancement due to polyester pinning were investigated experimentally under flatwise compression, edgewise compression and flexural test. The experimental investigations were carried out for both “foam filled honeycomb sandwich panels” (FHS) and “polyester pin-reinforced foam filled honeycomb sandwich panels” (PFHS). The results show that polyester pin reinforcement in foam filled honeycomb sandwich panel enhanced the flatwise, edgewise compression and flexural properties considerably. Moreover, increasing the pin diameter has a larger effect on the flexural rigidity of PFHS panels. PFHS panels have inconsequential increase in weight but appreciably improved their structural performance.


2014 ◽  
Vol 108 ◽  
pp. 1001-1008 ◽  
Author(s):  
Xin Li ◽  
Peiwen Zhang ◽  
Zhihua Wang ◽  
Guiying Wu ◽  
Longmao Zhao

Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3008
Author(s):  
Lei Shang ◽  
Ye Wu ◽  
Yuchao Fang ◽  
Yao Li

For aerospace applications, honeycomb sandwich panels may have small perforations on the cell walls of the honeycomb core to equilibrate the internal core pressure with external gas pressure, which prevent face-sheet/core debonding due to pressure build-up at high temperature. We propose a new form of perforation on the cell walls of honeycomb sandwich panels to reduce the influence of the perforations on the cell walls on the mechanical properties. In this paper, the high temperature mechanical properties of a new vented Ti-6Al-4V honeycomb sandwich panel were investigated. A vented Ti-6AL-4V honeycomb sandwich panel with 35Ti-35Zr-15Cu-15Ni as the filler alloy was manufactured by high-temperature brazing. The element distribution of the brazed joints was examined by means of SEM (scanning electron microscopy) and EDS (energy-dispersive spectroscopy) analyses. Compared to the interaction between the face-sheets and the brazing filler, the diffusion and reaction between the honeycomb core and the brazing filler were stronger. The flatwise compression and flexural mechanical properties of the vented honeycomb sandwich panels were investigated at 20, 160, 300, and 440 °C, respectively. The flatwise compression strength, elastic modulus, and the flexural strength of the vented honeycomb sandwich panels decreased with the increase of temperature. Moreover, the flexural strength of the L-direction sandwich panels was larger than that of the W-direction sandwich panels at the same temperature. More importantly, the vented honeycomb sandwich panels exhibited good compression performance similar to the unvented honeycomb sandwich panels, and the open holes on the cell walls have no negative effect on the compression performance of the honeycomb sandwich panels in these conditions. The damage morphology observed by SEM revealed that the face-sheets and the brazing zone show ductile and brittle fracture behaviors, respectively.


2017 ◽  
Vol 25 (8) ◽  
pp. 637-646 ◽  
Author(s):  
Xin Li ◽  
Peiwen Zhang ◽  
Li Shiqiang ◽  
Zhihua Wang ◽  
Guiying Wu

2015 ◽  
Vol 1119 ◽  
pp. 812-815
Author(s):  
Cong Bo Ma ◽  
Yan Wei Wang ◽  
Guang Ping Zou ◽  
Xuan Du

It’s very important to select appropriate dimensions for manufacture of honeycomb sandwich. In this paper, the experimental and theoretical methods were compared. The results are proved that the theoretical formula can be applied to engineering design. The impact factor of staties mechanical properties of honeycomb panels also was studied. And a theoretical basis for the design of honeycomb sandwich panels is provided.


Sign in / Sign up

Export Citation Format

Share Document