scholarly journals Internal Diameter Coating by Warm Spraying of Fine WC-12Co Powders (− 10 + 2 µm) with Very Short Spray Distances up to 10 mm

Author(s):  
I. Baumann ◽  
W. Tillmann ◽  
C. Schaak ◽  
K. Schmidt ◽  
L. Hagen ◽  
...  

AbstractThe internal diameter (ID) coating by means of thermal spraying is currently experiencing growing interest in science and industry. In contrast to the well-established plasma- and arc-based spray techniques, there is a lack of knowledge concerning kinetic processes such as HVOF, HVAF and warm spray (WS). A major challenge represents the necessity of short spray distances and the compact design of novel ID spray guns with reduced combustion power. Conventional WC-Co powders (− 45 + 15 µm) are not able to achieve a sufficient heat and momentum transfer. The use of fine powders < 15 µm offers an approach to overcome this drawback as they feature a larger surface-to-volume ratio and a lower mass. However, the processing of fine powders requires suitable spray equipment and a sensitive parameter adjustment. In this study, warm spraying of fine WC-12Co powders (− 10 + 2 µm) with a novel ID spray gun (HVOF + N2) “ID RED” (Thermico Engineering GmbH, Germany) was investigated. First, the flame profile as well as the in-flight behavior of the particles along the spray jet (spray distances SD = 10-80 mm) was analyzed at different nitrogen flows NF = 15-115 L/min to find suitable spray parameter intervals. Subsequently, planar steel samples were coated with SD = 10-50 mm and constant NF = 90 L/min. Analyses regarding the microstructure, the mechanical properties and the phase evolution of the coatings were performed. The aim was to study spraying with the novel ID gun and to scrutinize shortest feasible spray distances. Finally, steel tubes (internal diameter of 81.6 mm and a wall thickness of 10.0 mm) were coated with SD = 20 mm and NF = 90 L/min to investigate in how far the results can be transferred to ID parts. Correlations between the particle behavior, the microstructure and the coating properties were made.

2021 ◽  
Author(s):  
W. Tillmann ◽  
I. Baumann ◽  
A. Brinkhoff ◽  
S. Kuhnt ◽  
E.-C. Becker-Emden ◽  
...  

Abstract Internal diameter (ID) coating by means of thermal spraying for the wear and corrosion protection of components is currently experiencing growing interest in science and industry. While high-kinetic spray processes (such as HVOF, HVAF or warm spraying) in combination with cermet materials (e.g. WC-Co or Cr3C2-NiCr) are well established for this purpose in traditional coating of external OD (outer diameter) surfaces, they have hardly been used in the ID (internal diameter) area so far. Even though a few special ID spray guns with compact design and low combustion energy are by now available on the market, only little is known about the effects and interactions of the spray parameters on the particle behavior and the coating properties. Due to the mentioned gun specifications and the usually required short spray distances for ID coating, fine spray powders &lt; 15 μm must be used to ensure sufficient melting and acceleration of the particles. In this study warm spraying of fine WC-12Co powders (-10 + 2 μm) using a novel spray gun “ID RED” (Thermico, Germany) was investigated. Statistical design of experiments (DoE) was employed to analyze and to model the influence of varying spray parameter settings on the in-flight particle behavior and the corresponding coating properties.


Author(s):  
Armaghan Shafaei ◽  
Mohammed Ali Ahmed Saeed ◽  
Abdalrahim F. A. Aisha ◽  
Zhari Ismail

<p><strong>Objective: </strong>This study aimed to perform pharmacokinetic profile of rosmarinic acid (RA), sinensitin (SIN), eupatorin (EUP) and 3<sup>΄</sup>-hydroxy-5,6,7,4΄-tetramethoxyflavone (TMF) in <em>Orthosiphon stamineus</em> ethanolic extract (OS-E) and its nanoliposomes (OS-EL) after oral and intravenous administration in Sprague-Dawley rat’s plasma by developing and validating a high-performance liquid chromatography (HPLC) method with ultraviolet (UV) detection.</p><p><strong>Methods: </strong>An isocratic elution program consisting of methanol: tetrahydrofuran: water (0.1% H<sub>3</sub>PO<sub>4</sub>) mixture in the volume ratio 55: 5: 40 on Nucleosil C18 column (250 × 4.6 mm internal diameter × 5 µm particles size) was applied. The current study followed a two-ways crossover study design. OS-E and OS-EL were administered orally at 1000 and 500 mg/kg, respectively. They were also administered intravenously at 250 mg/kg via the tail vein.</p><p><strong>Results</strong>:<strong> </strong>The HPLC-UV method was successfully developed and validated for simultaneous determination of major chemical constituent from OS-E and OS-EL in rat’s plasma. The method recorded the mean recoveries from extraction were between 91.39 and 100.32%. With regards to the intravenous administration of OS-EL, all four marker compounds appeared to be poorly distributed and cleared slowly from the body compared to OS-E. Whilst in oral administration of OS-EL, the bioavailability of all marker compounds were higher than OS-E due to higher solubility of encapsulation in phospholipids.</p><p><strong>Conclusion</strong>:<strong> </strong>The higher solubility and bioavailability of OS-EL may contribute to encapsulation in phospholipids.</p>


2016 ◽  
Vol 14 (1) ◽  
pp. 383-393 ◽  
Author(s):  
Reiyu Chein ◽  
Yen-Cho Chen ◽  
Jui-Yu Chen ◽  
J. N. Chung

AbstractMethanol catalytic combustion in a mini-scale tubular quartz-made combustor is investigated in this study. An alumina sphere was employed as the support for the platinum catalyst. The experimental results showed that the combustion can be self-ignited at room temperature. Using the combustor wall temperature to characterize the combustor performance, it was found that the combustion temperature can reach a high value within a short time. The experimental results indicated that the combustor performance depends greatly on the fuel/air supply. A higher temperature can be obtained with a higher fuel/air flow rate. The insulated and non-insulated combustor experimental results indicated that heat loss to the environment is an important factor in governing the combustion characteristics due to the large surface/volume ratio. A higher temperature can also be obtained when the combustor is insulated. Because most of the combustion took place at the combustor entrance region, the experimental result suggested that the combustor length can be shortened, leading to a more compact design allowing the combustor integration with various applications. A simple numerical model was built to provide a greater understanding of the combustion characteristics and examine the heat loss effect on combustor performance.


2013 ◽  
Vol 814 ◽  
pp. 49-53 ◽  
Author(s):  
Adriana Arghirescu ◽  
Constantin Baciu ◽  
Nicanor Cimpoeşu

Thermal spraying is composed of a group of processes in order to obtain thin films, where fine powders, metallic or nonmetallic, will be deposited in molten or semi-molten state to form a coating layer with the properties required for use. Few layers of stainless steel on usual steel substrates were deposited through thermal spraying deposition in different conditions. As anchor layer a nickel thin film was used between substrate and external layer. The materials surface was analyzed through scanning electrons technique using a VegaTescan LMH II microscope. Thermal metal spraying in electric arc was performed at different working distances which influenced the surface roughness of the deposited layers. To highlight these issues, the parameter of roughness (Rz) and (Ra) measurements were made of the corresponding obtained surfaces. Due to the fact that macroscopically it was noted an increased roughness, it was necessary that the experimental investigations to be conducted on a Taylor-Hobson equipment, model FormTaly Surf 50 (AMTEK, USA).


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 971
Author(s):  
Yen-Heng Lin ◽  
Chih-Ching Wu ◽  
Wan-Ling Chen ◽  
Kai-Ping Chang

The incidence of oral squamous cell carcinoma (OSCC), which is one of the most common cancers worldwide, has been increasing. Serum anti-p53 autoantibody is one of the most sensitive biomarkers for OSCC. Currently, the most commonly used method on clinical screening platforms is the enzyme-linked immunosorbent assay, owing to its high specificity and repeatability. However, conducting immunoassays on 96-well plates is typically time consuming, thereby limiting its clinical applications for fast diagnosis and immediate prognosis of rapidly progressive diseases. The present study performed immunoassays in glass capillaries of 1-mm internal diameter, which increases the surface to volume ratio of the reaction, to shorten the time needed for immunoassay. The immunoassay was automated while using linear motorized stages and a syringe pump. The results indicated that, when compared with the 96-well plate immunoassay, the glass capillary immunoassay decreased the reaction time from typical 120 min to 45 min, reduced the amount of reagent from typical 50 µL to 15 µL, and required only simple equipment setup. Moreover, the limit of detection for glass capillary anti-p53 autoantibody immunoassay was 0.46 ng mL−1, which is close to the 0.19 ng mL−1 value of the conventional 96-well plate assay, and the glass capillary method had a broader detection range. The apparatus was used to detect the serum anti-p53 autoantibody concentration in clinical patients and compare its results with the conventional 96-well plate method results, which suggested that both of the methods detect the same trend in the relative concentration of serum anti-p53 autoantibody in healthy individuals or patients with OSCC.


Author(s):  
H. Mori ◽  
Y. Murata ◽  
H. Yoneyama ◽  
H. Fujita

Recently, a new sort of nano-composites has been prepared by incorporating such fine particles as metal oxide microcrystallites and organic polymers into the interlayer space of montmorillonite. Owing to their extremely large specific surface area, the nano-composites are finding wide application[1∼3]. However, the topographic features of the microstructures have not been elucidated as yet In the present work, the microstructures of iron oxide-pillared montmorillonite have been investigated by high-resolution transmission electron microscopy.Iron oxide-pillared montmorillonite was prepared through the procedure essentially the same as that reported by Yamanaka et al. Firstly, 0.125 M aqueous solution of trinuclear acetato-hydroxo iron(III) nitrate, [Fe3(OCOCH3)7 OH.2H2O]NO3, was prepared and then the solution was mixed with an aqueous suspension of 1 wt% clay by continuously stirring at 308 K. The final volume ratio of the latter aqueous solution to the former was 0.4. The clay used was sodium montmorillonite (Kunimine Industrial Co.), having a cation exchange capacity of 100 mequiv/100g. The montmorillonite in the mixed suspension was then centrifuged, followed by washing with deionized water. The washed samples were spread on glass plates, air dried, and then annealed at 673 K for 72 ks in air. The resultant film products were approximately 20 μm in thickness and brown in color.


2007 ◽  
Vol 177 (4S) ◽  
pp. 340-340 ◽  
Author(s):  
Hong Gee Sim ◽  
Donatello Telesca ◽  
Stephen H. Culp ◽  
Paul H. Lange ◽  
William J. Ellis ◽  
...  

2001 ◽  
Author(s):  
W. Richard Walker ◽  
Rodney J. Vogl ◽  
Steve J. Hoekstra
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document