Effect of two plant growth retardants on steviol glycosides content and antioxidant capacity in Stevia (Stevia rebaudiana Bertoni)

2014 ◽  
Vol 36 (5) ◽  
pp. 1211-1219 ◽  
Author(s):  
Mojtaba Karimi ◽  
Ali Ahmadi ◽  
Javad Hashemi ◽  
Alireza Abbasi ◽  
Luciana G. Angelini
2019 ◽  
Vol 141 ◽  
pp. 240-249 ◽  
Author(s):  
Yuming Sun ◽  
Menglan Hou ◽  
Luis A.J. Mur ◽  
Yongheng Yang ◽  
Ting Zhang ◽  
...  

2019 ◽  
Vol 38 (4) ◽  
pp. 1341-1353 ◽  
Author(s):  
Simone Ribeiro Lucho ◽  
Marcelo Nogueira do Amaral ◽  
Priscila Ariane Auler ◽  
Valmor João Bianchi ◽  
María Ángeles Ferrer ◽  
...  

Biologia ◽  
2017 ◽  
Vol 72 (10) ◽  
Author(s):  
Rabia Javed ◽  
Buhara Yucesan ◽  
Muhammad Zia ◽  
Ekrem Gurel

AbstractPlants naturally produce secondary metabolites on exposure to abiotic/biotic stress. Production of secondary metabolites, like phenols or flavonoids, is a defence mechanism against different stresses. This study explores the influence of plant growth regulators (PGRs) on the growth and secondary metabolites of


2020 ◽  
pp. 31-35
Author(s):  
N. G. Sinyavina ◽  
A. A. Kochetov ◽  
K. V. Egorova ◽  
V. E. Vertebny ◽  
Yu. V. Khomyakov

Relevance. Plant growth biostimulants based on natural raw materials are ecologically safe and harmless to humans. Stevia (Stevia rebaudiana Bertoni) contains in its leaves sweet diterpene steviol glycosides, which are similar in structure and properties to gibberellins, as well as a number of other valuable biologically active compounds. Water extracts from stevia leaves are capable to accelerate growth, to increase the yield and quality of plants. However, further study and development of application technologies of the extracts for specific crops and different growing conditions are required. The purpouse of this work is to investigate the effect of an aqueous extract from stevia leaves on the yield and quality of lettuce and small radish under photoculture conditions. Materials and methods. The objects of the study were lettuce var. Typhoon and small radish var. Riesenbutter. The plants were grown in photoculture at the biopolygon of the FSBSI Agrophysical Research Institute (St. Petersburg) at an illumination of 10–20 klx, a temperature of 22–26°С (day) and 18–20°С (night). Watering was carried out with water, top-dressing was carried out with Knop's nutrient solution three times a week. Peat with mineral additives was used as a substrate. The original extract was prepared by extraction from stevia dry leaves powder with hot water (80°С) in a ratio of 1 g of leaves: 100 ml of water. Foliar treatment of plants was carried out twice at dilution of the original extract from stevia leaves 1:10, 1:50, and 1:100 (extract : water) at the rate of 0.20-0.25 ml / lettuce plant and 0.09-0.1 ml / radish plant; control plants were treated with water. The data were processed according to standard procedures using the Excel 2016 software. Results. Foliar treatment with an extract from stevia leaves did not significantly affect the size and weight of radish root crops, but increased the yield due to a decrease in the number of bolting plants. A significant decrease of bolting was observed in all treatment options (by 34-51%). When using a dilution of 1: 100, the yield of marketable root crops increased by 20% and the yield per sq. m. – by 25%. Foliar treatment with stevia extracts increased the mass of lettuce plants, as well as their biological value. The content of photosynthetic pigments, sugars, and vitamin C significantly increased, and a tendency towards a decrease in the content of nitrates was observed. According to data, we recommend for foliar treatment are dilutions of the original extract 1:50 and 1: 100. The effect of using of an extract from stevia leaves is similar in action to some biostimulants from plants with hormone-like properties, which determines the possibility of using it as a safe plant growth stimulant.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4090
Author(s):  
Morteza Sheikhalipour ◽  
Behrooz Esmaielpour ◽  
Gholamreza Gohari ◽  
Maryam Haghighi ◽  
Hessam Jafari ◽  
...  

High salt levels are one of the significant and major limiting factors on crop yield and productivity. Out of the available attempts made against high salt levels, engineered nanoparticles (NPs) have been widely employed and considered as effective strategies in this regard. Of these NPs, titanium dioxide nanoparticles (TiO2 NPs) and selenium functionalized using chitosan nanoparticles (Cs–Se NPs) were applied for a quite number of plants, but their potential roles for alleviating the adverse effects of salinity on stevia remains unclear. Stevia (Stevia rebaudiana Bertoni) is one of the reputed medicinal plants due to their diterpenoid steviol glycosides (stevioside and rebaudioside A). For this reason, the current study was designed to investigate the potential of TiO2 NPs (0, 100 and 200 mg L−1) and Cs–Se NPs (0, 10 and 20 mg L−1) to alleviate salt stress (0, 50 and 100 mM NaCl) in stevia. The findings of the study revealed that salinity decreased the growth and photosynthetic traits but resulted in substantial cell damage through increasing H2O2 and MDA content, as well as electrolyte leakage (EL). However, the application of TiO2 NPs (100 mg L−1) and Cs–Se NPs (20 mg L−1) increased the growth, photosynthetic performance and activity of antioxidant enzymes, and decreased the contents of H2O2, MDA and EL under the saline conditions. In addition to the enhanced growth and physiological performance of the plant, the essential oil content was also increased with the treatments of TiO2 (100 mg L−1) and Cs–Se NPs (20 mg L−1). In addition, the tested NPs treatments increased the concentration of stevioside (in the non-saline condition and under salinity stress) and rebaudioside A (under the salinity conditions) in stevia plants. Overall, the current findings suggest that especially 100 mg L−1 TiO2 NPs and 20 mg L−1 Cs–Se could be considered as promising agents in combating high levels of salinity in the case of stevia.


2021 ◽  
Vol 11 (8) ◽  
pp. 3634
Author(s):  
Teresa Leszczyńska ◽  
Barbara Piekło ◽  
Aneta Kopeć ◽  
Benno F. Zimmermann

This study compares the content of basic nutrients (proteins, fats, digestible carbohydrates, dietary fiber and ash), steviol glycosides, selected antioxidants (vitamin C, total polyphenols) and antioxidant activity in dried leaves of Stevia rebaudiana Bertoni cultivated in Poland, Paraguay and Brazil and available in the direct sale. The basic chemical composition was determined by standard AOAC (Association of Official Analytical Chemists) methods. Content of steviol glycosides was determined by the UHPLC-UV chromatographic method. Total polyphenols content was expressed as gallic acid equivalent (GAE) and catechins equivalent (CE). Antioxidant activity was measured as ABTS●+ free radical scavenging activity. Dried leaves of S. rebaudiana grown in Poland had significantly higher contents of dietary fiber, and lower protein and ash content, compared to those derived from Paraguay and Brazil. The former had, however, considerably higher contents of total steviol glycosides, stevioside and rebaudioside D, compared to the remaining two plants. In the Paraguay-derived dried leaves, the content of rebaudioside A, C, E and rubusoside was found to be significantly lower. Dried leaves of S. rebaudiana Bertoni, cultivated in Poland, contained substantially more vitamin C and a similar content of total polyphenols, compared to those from Brazil and Paraguay. The examined material from Brazil and Paraguay plantations showed similar antioxidant activity, while that obtained from Polish cultivation was characterized by a significantly lower value of this parameter.


Forests ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 19
Author(s):  
Xiaodeng Shi ◽  
Siyu Chen ◽  
Zhongkui Jia

The effects of varieties, concentrations, and number of applications of plant growth retardants (PGRs) on the morphological, physiological, and endogenous hormones of Magnolia wufengensis L.Y. Ma et L. R. Wang were assessed to obtain the most suitable dwarfing protocol for M. wufengensis and to provide theoretical support and technical guidance for the cultivation and promotion of this species. One-year-old M. wufengensis ‘Jiaohong No. 2’ grafted seedlings served as the experimental materials. In the first part of the experiment, three PGRs (uniconazole, paclobutrazol, prohexadione calcium), three concentrations (500, 1000, 1500 ppm), and three applications (one, three, and five applications) were applied in dwarfing experiments to perform L9 (34) orthogonal tests. In the second part of the study, dwarfing experiments were supplemented with different high uniconazole concentrations (0, 1500, 2000, 2500 ppm). Spraying 1500 ppm uniconazole five times achieved the best M. wufengensis dwarfing effect, related indicators of M. wufengensis under this treatment were better than other treatment combinations. Here, M. wufengensis plant height, internode length, scion diameter, and node number were significantly reduced by 56.9%, 62.6%, 72.8%, and 74.4%, respectively, compared with the control group. This treatment increased superoxide dismutase (SOD) activity by 66.0%, peroxidase (POD) activity by 85.0%, soluble protein contents by 43.3%, and soluble sugar contents by 27.6%, and reduced malondialdehyde (MDA) contents by 32.1% in leaves of M. wufengensis compared with the control. The stress resistance of M. wufengensis was enhanced. The treatment also reduced gibberellin (GA3) levels by 73.0%, auxin (IAA) by 58.0%, and zeatin (ZT) by 70.6%, and increased (abscisic acid) ABA by 98.1% in the leaves of M. wufengensis. The uniconazole supplementation experiment also showed that 1500 ppm was the optimal uniconazole concentration. The leaves exhibited abnormalities such as crinkling or adhesion when 2000 or 2500 ppm was applied. Given the importance of morphological indicators and dwarfing for the ornamental value of M. wufengensis, the optimal dwarfing treatment for M. wufengensis was spraying 1500 ppm uniconazole five times.


Sign in / Sign up

Export Citation Format

Share Document