Improving performance of olive trees by the enhancement of key physiological parameters of olive leaves in response to foliar fertilization

2016 ◽  
Vol 38 (4) ◽  
Author(s):  
Meriem Tekaya ◽  
Sinda El-Gharbi ◽  
Beligh Mechri ◽  
Hechmi Chehab ◽  
Amani Bchir ◽  
...  
Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1299
Author(s):  
Pablo Doménech ◽  
Aleta Duque ◽  
Isabel Higueras ◽  
José Luis Fernández ◽  
Paloma Manzanares

Olive trees constitute one of the largest agroindustries in the Mediterranean area, and their cultivation generates a diverse pool of biomass by-products such as olive tree pruning (OTP), olive leaves (OL), olive stone (OS), and extracted olive pomace (EOP). These lignocellulosic materials have varying compositions and potential utilization strategies within a biorefinery context. The aim of this work was to carry out an integral analysis of the aqueous extractives fraction of these biomasses. Several analytical methods were applied in order to fully characterize this fraction to varying extents: a mass closure of >80% was reached for EOP, >76% for OTP, >65% for OS, and >52% for OL. Among the compounds detected, xylooligosaccharides, mannitol, 3,4-dihydroxyphenylglycol, and hydroxytyrosol were noted as potential enhancers of the valorization of said by-products. The extraction of these compounds is expected to be more favorable for OTP, OL, and EOP, given their high extractives content, and is compatible with other utilization strategies such as the bioconversion of the lignocellulosic fraction into biofuels and bioproducts.


2017 ◽  
Vol 7 ◽  
Author(s):  
Juana Nieto ◽  
Antonio García-Fuentes ◽  
Llenalia M. García ◽  
Emilia Fernández-Ondoño

The aim of this study was to establish the evolution curves of macro- and micro-nutrients in olive leaves and the periods of time in which they are statistically stable and can be considered suitable for a nutritional diagnosis. The study was carried out in two farms of the province of Jaén (Andalucia, Southern Spain), with olive trees of the Picual variety, under an irrigation regime and no nutritional deficiencies over the entire year. The evolution curves of each nutrient had great similarities when comparing between farms and between periods. Only in some periods the farm “Poco Humo” had higher concentrations, probably due to the most favorable edaphic characteristics of this farm. Nitrogen and phosphorus showed minimum concentrations when the leaves were young and when they were one year old, and maximum concentrations during the winter. Potassium and boron showed higher concentrations when the leaves were young, and the concentrations decreased throughout the first year of life. Concentrations of calcium, magnesium and manganese had the opposite behavior: these accumulated in leaf until reaching maximum values in winter and then remained stable, with some oscillations but without statistically significant differences. No changes were observed in the zinc concentrations in the sampled periods. Periods of at least two consecutive months without statistically significant differences were found during the winter period for all elements except nitrogen. Analytical stability was observed from the second fortnight of May till the first fortnight of August for all elements except phosphorus and boron.


2020 ◽  
Vol 12 (24) ◽  
pp. 10630
Author(s):  
João I. Lopes ◽  
Margarida Arrobas ◽  
Cátia Brito ◽  
Alexandre Gonçalves ◽  
Ermelinda Silva ◽  
...  

Four soil treatments, consisting of two commercial mycorrhizal fungi, one zeolite and an untreated control, were arranged in a factorial design with two foliar fertilization treatments, a foliar spray and a control to study the effects of commercial mycorrhizal fungi and zeolites on the growth of young, rainfed olive trees planted in very acidic soil. The concentrations in the plant tissues of most of essential nutrients, particularly nitrogen (N), phosphorus (P), potassium (K) and boron (B), did not significantly change with the soil treatments, whereas leaf N and B concentrations significantly increased with foliar fertilization. Leaf calcium (Ca) and magnesium (Mg) levels were found to be much lower than their respective sufficiency ranges and increased with soil amendments, also giving positive outcomes for plant water status, photosynthetic activity and assimilation area. Ultimately, the mycorrhizal fungi increased the growth of the young trees, whereas the effect of zeolites was much smaller and not significantly different to the control. Thus, it seems that in this very acidic soil and under rainfed conditions, the major benefits for plants from the application of mycorrhizal fungi and zeolites were the alleviation of drought stress and tissue Ca and Mg disorders.


2020 ◽  
Vol 8 (1) ◽  
pp. 12-20
Author(s):  
Mazen Salman

The olive leaf spot disease caused by the fungus Spilocaea oleagina (Cast.) Hughes (syn. Cycloconium oleagina) is one of the most destructive diseases on olive trees causing losses that may reach 20% of the yield. The disease is controlled by the application of chemical fungicides which is not always feasible in providing proper protection against the pathogen. In this work we report the efficacy of Pseudomonas fluorescenc isolate ORS3 and Bascillus atrophaeus isolate Bat in controlling the disease under field conditions. An Olive field in, Tulkarm governorate, Palestine was selected. The olive trees were 5-10 years old and were highly infected with the olive leaf spot. Trees were sprayed with bacteria formulated in oil. Control trees were sprayed with water. For evaluation of bacterial efficacy against the disease, olive leaves were collected before and after application of the bacteria. Germination of conidia latent infection and severity were determined. In addition to that, bacterial viability was assessed. Results of the work revealed that the bacteria were able to inhibit conidial germination of the fungus. The percent of reduction in conidial germination (85.8 and 70.2%) in the presence of P. fluorescenc isolate ORS and B. atrophaeus isolate Bat, respectively was significantly lower than that in the control or in leaves sprayed with 10% oil (69.1 and 56.1%, respectively). After two weeks of spraying, the percent of latent infectoin (figure 4) was significantly (p<0.05) lower on leaves sprayed with P. fluorescenc isolate ORS3 and B. atrophaeus isolate BAT (5.1 and 3.8% latent infection, respectively). However, bacterial shelf life on the surface of olive leaves was reduced after three days of spraying (i.e no bacteria were re-isolated). The results indicated that the bacteria can be used for control of the leaf spot disease. Further studies are required to evaluate the efficacy of the bacteria under different environmental conditions.


2020 ◽  
Vol 6 (4) ◽  
pp. 369
Author(s):  
Roberta Marra ◽  
Mariangela Coppola ◽  
Angela Pironti ◽  
Filomena Grasso ◽  
Nadia Lombardi ◽  
...  

Biocontrol fungal strains of the genus Trichoderma can antagonize numerous plant pathogens and promote plant growth using different mechanisms of action, including the production of secondary metabolites (SMs). In this work we analyzed the effects of repeated applications of selected Trichoderma strains or SMs on young olive trees on the stimulation of plant growth and on the development of olive leaf spot disease caused by Fusicladium oleagineum. In addition, metabolomic analyses and gene expression profiles of olive leaves were carried out by LC–MS Q-TOF and real-time RT-PCR, respectively. A total of 104 phenolic compounds were detected from olive leave extracts and 20 were putatively identified. Targeted and untargeted approaches revealed significant differences in both the number and type of phenolic compounds accumulated in olive leaves after Trichoderma applications, as compared to water-treated plants. Different secoiridoids were less abundant in treated plants than in controls, while the accumulation of flavonoids (including luteolin and apigenin derivatives) increased following the application of specific Trichoderma strain. The induction of defense-related genes, and of genes involved in the synthesis of the secoiridoid oleuropein, was also analyzed and revealed a significant variation of gene expression according to the strain or metabolite applied.


Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 292 ◽  
Author(s):  
Lorenzo Tognaccini ◽  
Marilena Ricci ◽  
Cristina Gellini ◽  
Alessandro Feis ◽  
Giulietta Smulevich ◽  
...  

Dimethoate (DMT) is an organophosphate insecticide commonly used to protect fruit trees and in particular olive trees. Since it is highly water-soluble, its use on olive trees is considered quite safe, because it flows away in the residual water during the oil extraction process. However, its use is strictly regulated, specially on organic cultures. The organic production chain certification is not trivial, since DMT rapidly degrades to omethoate (OMT) and both disappear in about two months. Therefore, simple, sensitive, cost-effective and accurate methods for the determination of dimethoate, possibly suitable for in-field application, can be of great interest. In this work, a quick screening method, possibly useful for organic cultures certification will be presented. DMT and OMT in water and on olive leaves have been detected by surface enhanced Raman spectroscopy (SERS) using portable instrumentations. On leaves, the SERS signals were measured with a reasonably good S/N ratio, allowing us to detect DMT at a concentration up to two orders of magnitude lower than the one usually recommended for in-field treatments. Moreover, detailed information on the DMT distribution on the leaves has been obtained by Raman line- (or area-) scanning experiments.


2008 ◽  
pp. 381-385
Author(s):  
M. Policarpo ◽  
R. Lo Bianco ◽  
L. Di Marco

Sign in / Sign up

Export Citation Format

Share Document