Assessment of changes in the content of sulforaphane and expression levels of CYP79F1 and myrosinase genes and proteomic profile of Lepidium draba plant under water-deficit stress induced by polyethylene glycol

2020 ◽  
Vol 42 (6) ◽  
Author(s):  
Kiarash Jamshidi Goharrizi ◽  
Foad Fatehi ◽  
Maryam Nazari ◽  
Fatemeh Salehi ◽  
Mahmood Maleki
2016 ◽  
Vol 69 (3) ◽  
Author(s):  
Andrzej Gawlik ◽  
Dorota Gołębiowska ◽  
Danuta Kulpa ◽  
Romualda Bejger ◽  
Renata Matuszak-Slamani ◽  
...  

A laboratory research was carried out to examine the impact of humic acids (HA) on swelling and germination of ‘Nawiko’ and ‘Progres’ soybean seeds under salt stress (50 mM dm<sup>−3</sup> NaCl) and water deficit stress (−0.5 MPa) induced by polyethylene glycol (PEG) 6000. HA in the form of a dry preparation was obtained from peat using the IHSS method. Tests on swelling and germination used non-fractionate preparation (NFHA) and two of its molecular fractions obtained using Millipore filters with a 30 kDa cut-off point. This enabled us to obtain two fractions: with a higher molecular weight, above 30 kDa (HMHA), and a lower molecular weight, below 30 kDa (LMHA). The carbon concentration in HA solutions, used in all tests, was 0.005 g C<span><sub>HA</sub></span> dm<sup>−3</sup>. The results showed that HA mitigate the negative impact of salinity and water deficit on swelling and germination of soybean seeds.


2017 ◽  
Vol 15 (1) ◽  
pp. 81-91 ◽  
Author(s):  
MS Rana ◽  
MA Hasan ◽  
MM Bahadur ◽  
MR Islam

The performance of twenty wheat genotypes under Polyethylene Glycol (PEG) induced water stress during germination and early seedling growth stages were tested under three levels of water potential i) Control (Tap water), ii) -2 bars and iii) -4 bar at the Crop Physiology and Ecology Laboratory of Hajee Mohammad Danesh Science and Technology University, Dinajpur during September 2014 to October 2014. Rate of germination and vigor index of all wheat genotypes were delayed with the increment of water stress induced by PEG. Shoot and root lengths and seedling dry weight of 10 days old seedlings were found to be reduced due to the increment of water stress. However, the degree of reduction of these parameters with the increment of water stress was not similar for all wheat genotypes. Stress tolerance index (STI) based on seedling dry weight indicated a wide difference in stress tolerance among the wheat genotypes. At moderate water deficit stress, BARI Gom 25, E 34, E 28 and BAW 1170 showed more stress tolerance and the wheat genotypes- Sourav, E 23 and BAW 1140 showed greater stress sensitivity than the other wheat genotypes. At higher water deficit stress, BARI Gom 25, BARI Gom 28, E 28 and BAW 1170 showed more stress tolerance and the wheat genotypes- Satabdi, Sourav, BARI Gom 26, E 23, E 38, E 24, BAW 1163, BAW 1140 and BAW 1151 showed greater stress sensitivity than the others. Considering both moderate and high water deficit stress, BARI Gom 25, E 28 and BAW 1170 were found as tolerant and Sourav, E 23 and BAW 1140 were found as water deficit stress sensitive wheat genotypes. The Agriculturists 2017; 15(1) 81-91


2014 ◽  
Vol 1 (1) ◽  
pp. 20-24
Author(s):  
Gader Ghaffari ◽  
Farhad Baghbani ◽  
Behnam Tahmasebpour

In order to group winter rapeseed cultivars according to evaluated traits, an experiment was conducted in the Research Greenhouse of Agriculture Faculty, University of Tabriz - IRAN. In the experiment were included 12 cultivars of winter rapeseed and 3 levels of water deficit stress. Gypsum blocks were used to monitor soil moisture. Water deficit stress was imposed from stem elongation to physiological maturity. According to the principal component analysis, five principal components were chosen with greater eigenvalue (more than 0.7) that are including 81.34% of the primeval variance of variables. The first component that explained the 48.02% of total variance had the high eigenvalue. The second component could justify about 13.64% of total variance and had positive association with leaf water potential and proline content and had negative relationship with leaf stomatal conductivity. The third, fourth and fifth components expressed around, 10.18, 4.83 and 4.68% of the total variance respectively. The third component had the high eigenvalue for plant dry weight. The fourth component put 1000-seed weight, seed yield, Silique per Plant and root dry weight against plant dry weight, chlorophyll fluorescence and leaf water potential. The fifth component had the high eigenvalue for root dry weight, root volume and 1000-seed weight.


2021 ◽  
Vol 22 (10) ◽  
pp. 5314
Author(s):  
Marlon-Schylor L. le Roux ◽  
Nicolas Francois V. Burger ◽  
Maré Vlok ◽  
Karl J. Kunert ◽  
Christopher A. Cullis ◽  
...  

Drought response in wheat is considered a highly complex process, since it is a multigenic trait; nevertheless, breeding programs are continuously searching for new wheat varieties with characteristics for drought tolerance. In a previous study, we demonstrated the effectiveness of a mutant known as RYNO3936 that could survive 14 days without water. In this study, we reveal another mutant known as BIG8-1 that can endure severe water deficit stress (21 days without water) with superior drought response characteristics. Phenotypically, the mutant plants had broader leaves, including a densely packed fibrous root architecture that was not visible in the WT parent plants. During mild (day 7) drought stress, the mutant could maintain its relative water content, chlorophyll content, maximum quantum yield of PSII (Fv/Fm) and stomatal conductance, with no phenotypic symptoms such as wilting or senescence despite a decrease in soil moisture content. It was only during moderate (day 14) and severe (day 21) water deficit stress that a decline in those variables was evident. Furthermore, the mutant plants also displayed a unique preservation of metabolic activity, which was confirmed by assessing the accumulation of free amino acids and increase of antioxidative enzymes (peroxidases and glutathione S-transferase). Proteome reshuffling was also observed, allowing slow degradation of essential proteins such as RuBisCO during water deficit stress. The LC-MS/MS data revealed a high abundance of proteins involved in energy and photosynthesis under well-watered conditions, particularly Serpin-Z2A and Z2B, SGT1 and Calnexin-like protein. However, after 21 days of water stress, the mutants expressed ABC transporter permeases and xylanase inhibitor protein, which are involved in the transport of amino acids and protecting cells, respectively. This study characterizes a new mutant BIG8-1 with drought-tolerant characteristics suited for breeding programs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. A. Gomaa ◽  
Essam E. Kandil ◽  
Atef A. M. Zen El-Dein ◽  
Mamdouh E. M. Abou-Donia ◽  
Hayssam M. Ali ◽  
...  

AbstractIn Egypt, water shortage has become a key limiting factor for agriculture. Water-deficit stress causes different morphological, physiological, and biochemical impacts on plants. Two field experiments were carried out at Etay El-Baroud Station, El-Beheira Governorate, Agriculture Research Center (ARC), Egypt, to evaluate the effect of potassium silicate (K-silicate) of maize productivity and water use efficiency (WUE). A split-plot system in the four replications was used under three irrigation intervals during the 2017 and 2018 seasons. Whereas 10, 15, and 20 days irrigation intervals were allocated in main plots, while the three foliar application treatments of K-silicate (one spray at 40 days after sowing; two sprays at 40 and 60 days; and three sprays at 40, 60, and 80 days, and a control (water spray) were distributed in the subplots. All the treatments were distributed in 4 replicates. The results indicated that irrigation every 15 days gave the highest yield in both components and quality. The highly significant of (WUE) under irrigation every 20 days. Foliar spraying of K-silicate three times resulted in the highest yield. Even under water-deficit stress, irrigation every fifteen days combined with foliar application of K-silicate three times achieved the highest values of grain yield and its components. These results show that K-silicate treatment can increase WUE and produce high grain yield requiring less irrigation.


Sign in / Sign up

Export Citation Format

Share Document