scholarly journals Recent Industrial Developments of Marine Composites Limit States and Design Approaches on Strength

Author(s):  
Beatrice Barsotti ◽  
Marco Gaiotti ◽  
Cesare Mario Rizzo

Abstract To further exploit the potential of marine composites applications in building ship hulls, offshore structures, and marine equipment and components, design approaches should be improved, facing the challenge of a more comprehensive and explicit assessment of appropriately defined limit states. The structure ultimate/limit conditions shall be verified in principle within the whole structural domain and throughout the ship service life. What above calls for extended and reliable materials characterization on the one hand and for accurate and wide-ranging procedures in structural analyses. This paper presents an overview of recent industrial developments of marine composites limit states assessments and design approaches, as available in open literature, focusing on pleasure crafts and yachts as well as navy ships and thus showing a starting point to fill the gap in this respect. After a general introduction about composites characterization techniques, current design practice and rule requirements are briefly summarized. Both inter-ply and intra-ply failure modes and corresponding limit states are then presented along with recently proposed assessment approaches. Three-dimensional aspects in failure modes and manufacturing methods have been identified as the main factors influencing marine composite robustness. Literature review highlighted also fire resistance and hybrid joining techniques as significant issues in the use of marine composites.

2004 ◽  
Vol 48 (03) ◽  
pp. 231-247
Author(s):  
Ibrahim A. Assakkaf ◽  
Bilal M. Ayyub

Stiffened and gross steel panels (plates) are very important components in ship and offshore structures, and therefore they should be designed for a set of failure modes that govern their strength. They form the backbone of most ships' structure, and they are by far the most commonly used element in a ship. They can be found in bottom structures, decks, side shell, and superstructures. To evaluate the strength of a stiffened or gross panel element, it is necessary to review various strength-predicting models and to study their biases, applicability, and limitations for different loading conditions acting on the element. In this paper, strength limit states for various failure modes of ship panels are presented. For each limit state, commonly used strength models were collected from many sources for evaluating their limitations and applicability and to study their biases and uncertainties. Wherever possible, the different types of biases resulting from these models were computed. The bias and uncertainty analyses for these strength models are needed for the development of load and resistance factor design (LRFD) rules for stiffened and gross panels of ship structures. The uncertainty and biases of these models were assessed and evaluated by comparing their predictions with ones that are more accurate or real values. The objective of this paper is to summarize strength prediction models of stiffened and gross panels that are suitable for LRFD development for ship structures. Monte Carlo simulation was used to assess the biases and uncertainties for these models. Recommendations for the use of the models and their biases in LRFD development are provided.


Author(s):  
Josip Tambača ◽  
Igor Velčić

We derive the one-dimensional bending–torsion equilibrium model for the junction of straight rods. The starting point is a three-dimensional nonlinear elasticity equilibrium problem written as a minimization problem for a union of thin, rod-like bodies. By taking the limit as the thickness of the three-dimensional rods tends to zero, and by using ideas from the theory of Γ-convergence, we find that the resulting model consists of the union of the usual one-dimensional nonlinear bending–torsion rod models which satisfy the following transmission conditions at the junction point: continuity of displacement and rotation of the cross-sections; balance of contact forces and contact couples.


Author(s):  
S. Khadpe ◽  
R. Faryniak

The Scanning Electron Microscope (SEM) is an important tool in Thick Film Hybrid Microcircuits Manufacturing because of its large depth of focus and three dimensional capability. This paper discusses some of the important areas in which the SEM is used to monitor process control and component failure modes during the various stages of manufacture of a typical hybrid microcircuit.Figure 1 shows a thick film hybrid microcircuit used in a Motorola Paging Receiver. The circuit consists of thick film resistors and conductors screened and fired on a ceramic (aluminum oxide) substrate. Two integrated circuit dice are bonded to the conductors by means of conductive epoxy and electrical connections from each integrated circuit to the substrate are made by ultrasonically bonding 1 mil aluminum wires from the die pads to appropriate conductor pads on the substrate. In addition to the integrated circuits and the resistors, the circuit includes seven chip capacitors soldered onto the substrate. Some of the important considerations involved in the selection and reliability aspects of the hybrid circuit components are: (a) the quality of the substrate; (b) the surface structure of the thick film conductors; (c) the metallization characteristics of the integrated circuit; and (d) the quality of the wire bond interconnections.


Author(s):  
K. Urban ◽  
Z. Zhang ◽  
M. Wollgarten ◽  
D. Gratias

Recently dislocations have been observed by electron microscopy in the icosahedral quasicrystalline (IQ) phase of Al65Cu20Fe15. These dislocations exhibit diffraction contrast similar to that known for dislocations in conventional crystals. The contrast becomes extinct for certain diffraction vectors g. In the following the basis of electron diffraction contrast of dislocations in the IQ phase is described. Taking account of the six-dimensional nature of the Burgers vector a “strong” and a “weak” extinction condition are found.Dislocations in quasicrystals canot be described on the basis of simple shear or insertion of a lattice plane only. In order to achieve a complete characterization of these dislocations it is advantageous to make use of the one to one correspondence of the lattice geometry in our three-dimensional space (R3) and that in the six-dimensional reference space (R6) where full periodicity is recovered . Therefore the contrast extinction condition has to be written as gpbp + gobo = 0 (1). The diffraction vector g and the Burgers vector b decompose into two vectors gp, bp and go, bo in, respectively, the physical and the orthogonal three-dimensional sub-spaces of R6.


2008 ◽  
Vol 67 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Stefano Passini

The relation between authoritarianism and social dominance orientation was analyzed, with authoritarianism measured using a three-dimensional scale. The implicit multidimensional structure (authoritarian submission, conventionalism, authoritarian aggression) of Altemeyer’s (1981, 1988) conceptualization of authoritarianism is inconsistent with its one-dimensional methodological operationalization. The dimensionality of authoritarianism was investigated using confirmatory factor analysis in a sample of 713 university students. As hypothesized, the three-factor model fit the data significantly better than the one-factor model. Regression analyses revealed that only authoritarian aggression was related to social dominance orientation. That is, only intolerance of deviance was related to high social dominance, whereas submissiveness was not.


2018 ◽  
Vol 13 (2) ◽  
pp. 187-211
Author(s):  
Patricia E. Chu

The Paris avant-garde milieu from which both Cirque Calder/Calder's Circus and Painlevé’s early films emerged was a cultural intersection of art and the twentieth-century life sciences. In turning to the style of current scientific journals, the Paris surrealists can be understood as engaging the (life) sciences not simply as a provider of normative categories of materiality to be dismissed, but as a companion in apprehending the “reality” of a world beneath the surface just as real as the one visible to the naked eye. I will focus in this essay on two modernist practices in new media in the context of the history of the life sciences: Jean Painlevé’s (1902–1989) science films and Alexander Calder's (1898–1976) work in three-dimensional moving art and performance—the Circus. In analyzing Painlevé’s work, I discuss it as exemplary of a moment when life sciences and avant-garde technical methods and philosophies created each other rather than being classified as separate categories of epistemological work. In moving from Painlevé’s films to Alexander Calder's Circus, Painlevé’s cinematography remains at the forefront; I use his film of one of Calder's performances of the Circus, a collaboration the men had taken two decades to complete. Painlevé’s depiction allows us to see the elements of Calder's work that mark it as akin to Painlevé’s own interest in a modern experimental organicism as central to the so-called machine-age. Calder's work can be understood as similarly developing an avant-garde practice along the line between the bestiary of the natural historian and the bestiary of the modern life scientist.


Author(s):  
Yifan Li ◽  
Huaiyuan Gu ◽  
Martyn Pavier ◽  
Harry Coules

Octet-truss lattice structures can be used for lightweight structural applications due to their high strength-to-density ratio. In this research, octet-truss lattice specimens were fabricated by stereolithography additive manufacturing with a photopolymer resin. The mechanical properties of this structure have been examined in three orthogonal orientations under the compressive load. Detailed comparison and description were carried out on deformation mechanisms and failure modes in different lattice orientations. Finite element models using both beam elements and three-dimensional solid elements were used to simulate the compressive response of this structure. Both the load reaction and collapse modes obtained in simulations were compared with test results. Our results indicate that three-dimensional continuum element models are required to accurately capture the behaviour of real trusses, taking into account the effects of finite-sized beams and joints.


BMC Surgery ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Bing Wu ◽  
Kai Song ◽  
Junyao Cheng ◽  
Pengfei Chi ◽  
Zhaohan Wang ◽  
...  

Abstract Background The imaging characteristics of sacral sacralalar-iliac (S2AI) screw trajectory in adult degenerative scoliosis (ADS) patients will be determined. Methods S2AI screw trajectories were mapped on three-dimensional computed tomography (3DCT) reconstructions of 40 ADS patients. The starting point, placement plane, screw template, and a circle centered at the lowest point of the ilium inner cortex were set on these images. A tangent line from the starting point to the outer diameter of the circle was selected as the axis of the screw trajectory. The related parameters in different populations were analyzed and compared. Results The trajectory length of S2AI screws in ADS patients was 12.00 ± 0.99 cm, the lateral angle was 41.24 ± 3.92°, the caudal angle was 27.73 ± 6.45°, the distance from the axis of the screw trajectory to the iliosciatic notch was 1.05 ± 0.81 cm, the distance from the axis of the screw trajectory to the upper edge of the acetabulum was 1.85 ± 0.33 cm, and the iliac width was 2.12 ± 1.65 cm. Compared with females, the lateral angle of male ADS patients was decreased, but the trajectory length was increased (P < 0.05). Compared to patients without ADS in previous studies, the lateral angle of male patients was larger, the lateral angle of female patients was increased, and the caudal angle was decreased (P < 0.05). Conclusions There is an ideal trajectory of S2AI screws in ADS patients. A different direction should be noticed in the placement of S2AI screws, especially in female patients.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 73
Author(s):  
Panagiotis Sitarenios ◽  
Francesca Casini

This paper presents a three-dimensional slope stability limit equilibrium solution for translational planar failure modes. The proposed solution uses Bishop’s average skeleton stress combined with the Mohr–Coulomb failure criterion to describe soil strength evolution under unsaturated conditions while its formulation ensures a natural and smooth transition from the unsaturated to the saturated regime and vice versa. The proposed analytical solution is evaluated by comparing its predictions with the results of the Ruedlingen slope failure experiment. The comparison suggests that, despite its relative simplicity, the analytical solution can capture the experimentally observed behaviour well and highlights the importance of considering lateral resistance together with a realistic interplay between mechanical parameters (cohesion) and hydraulic (pore water pressure) conditions.


Micromachines ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 3
Author(s):  
Kyo-in Koo ◽  
Andreas Lenshof ◽  
Le Thi Huong ◽  
Thomas Laurell

In the field of engineered organ and drug development, three-dimensional network-structured tissue has been a long-sought goal. This paper presents a direct hydrogel extrusion process exposed to an ultrasound standing wave that aligns fibroblast cells to form a network structure. The frequency-shifted (2 MHz to 4 MHz) ultrasound actuation of a 400-micrometer square-shaped glass capillary that was continuously perfused by fibroblast cells suspended in sodium alginate generated a hydrogel string, with the fibroblasts aligned in single or quadruple streams. In the transition from the one-cell stream to the four-cell streams, the aligned fibroblast cells were continuously interconnected in the form of a branch and a junction. The ultrasound-exposed fibroblast cells displayed over 95% viability up to day 10 in culture medium without any significant difference from the unexposed fibroblast cells. This acoustofluidic method will be further applied to create a vascularized network by replacing fibroblast cells with human umbilical vein endothelial cells.


Sign in / Sign up

Export Citation Format

Share Document