The Impact of High-Pressure Processing on the Structure and Sensory Properties of Egg White-Whey Protein Mixture at Acidic Conditions

2020 ◽  
Vol 13 (2) ◽  
pp. 379-389 ◽  
Author(s):  
Zhong Zhang ◽  
Ying Li ◽  
Michelle C. Lee ◽  
Raheleh Ravanfar ◽  
Olga I. Padilla-Zakour ◽  
...  
2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ajith Amsasekar ◽  
Rahul S. Mor ◽  
Anand Kishore ◽  
Anupama Singh ◽  
Saurabh Sid

Purpose The increased demand for high-quality, nutritionally rich processed food has led to non-thermal food processing technologies like high pressure processing (HPP), a novel process for microbial inactivation with minimal loss of nutritional and sensory properties. The purpose of this paper is to highlight the impact of HPP on the microbiological, nutritional and sensory properties of food. Design/methodology/approach Recent research on the role of HPP in maintaining food quality and safety and the impact of process conditions with respect to various food properties have been explored in this paper. Also, the hurdle approach and the effectiveness of HPP on food quality have been documented. Findings HPP has been verified for industrial application, fulfilling the consumer demand for processed food with minimum nutrition loss at low temperatures. The positive impact of HPP with other treatments is known as the hurdle approach that enhances its impact against microorganism activity and minimizes the effects on nutrition and sensory attributes. Originality/value This paper highlights the impact of HPP on various food properties and a good alternative as non-thermal technology for maintaining shelf life, sensory properties and retention of nutrients.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Netsanet Shiferaw Terefe ◽  
Gabriele A. Netzel ◽  
Michael E. Netzel

This study investigated the impact of copigmentation with sinapic acid on the stability of anthocyanins in strawberry purees of three commercial cultivars (Camarosa, Rubygem, and Festival) after high-pressure processing (HPP; 600 MPa/5 min) and thermal processing (TP; 88°C/2 min) and during three months of refrigerated storage. Copigmentation did not have a significant effect on the stability of anthocyanins during processing with 14% to 30% degradation observed with no significant difference among cultivars or the processing technique. On the contrary, copigmentation significantly (p<0.05) improved the stability of anthocyanins in HPP samples during storage, most probably via the formation of intramolecular complexes which improve the resistance of anthocyanins to degradation. The anthocyanin contents of the copigmented HPP Camarosa, Rubygem, and Festival samples were, respectively, 42%, 40%, and 33% higher than their noncopigmented counterparts at the end of the three-month storage. Copigmentation also improved the retention of the total antioxidant capacity of the HPP-processed strawberry samples. The TPC of the copigmented HPP Camarosa, Rubygem, and Festival samples was, respectively, 66%, 65%, and 85% higher than that of the non-copigmented samples after three months of storage, whereas the respective ORAC values were 36.5%, 59.3%, and 35.3% higher. In contrast, copigmentation did not improve the stability of anthocyanins in TP samples, although significant (p<0.05) improvement in antioxidant capacity was also observed in TP samples due to the antioxidant nature of the copigment.


2004 ◽  
Vol 67 (8) ◽  
pp. 1671-1675 ◽  
Author(s):  
D. CARMINATI ◽  
M. GATTI ◽  
B. BONVINI ◽  
E. NEVIANI ◽  
G. MUCCHETTI

The presence of Listeria monocytogenes on the rind of Gorgonzola cheese is difficult to avoid. This contamination can easily occur as a consequence of handling during ripening. The aims of this study were to determine the efficiency of high-pressure processing (HPP) for inactivation of L. monocytogenes on cheese rind and to evaluate the influence of HPP treatments on sensory characteristics. Gorgonzola cheese rinds, after removal, were inoculated (about 7.0 log CFU/g) with L. monocytogenes strains previously isolated from other Gorgonzola cheeses. The inoculated cheese rinds were processed with an HPP apparatus under conditions of pressure and time ranging from 400 to 700 MPa for 1 to 15 min. Pressures higher than 600 MPa for 10 min or 700 MPa for 5 min reduced L. monocytogenes more than 99%. A reduction higher than 99.999% was achieved pressurizing cheese rinds at 700 MPa for 15 min. Lower pressure or time treatments were less effective and varied in effectiveness with the cheese sample. Changes in sensory properties possibly induced by the HPP were evaluated on four different Gorgonzola cheeses. A panel of 18 members judged the treated and untreated cheeses in a triangle test. Only one of the four pressurized cheeses was evaluated as different from the untreated sample. HPP was effective in the reduction of L. monocytogenes on Gorgonzola cheese rinds without significantly changing its sensory properties. High-pressure technology is a useful tool to improve the safety of this type of cheese.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2665 ◽  
Author(s):  
Qianli Ma ◽  
Nazimah Hamid ◽  
Indrawati Oey ◽  
Kevin Kantono ◽  
Mustafa Farouk

This study investigated the effects of high pressure processing (HPP) on the physicochemical properties and sensory characteristics of different lamb meat cuts. Lamb meat discolouration occurred when HPP was applied at 400 and 600 MPa. Thiobarbituric acid reactive substances (TBARS) values significantly increased with pressure increase from 200 to 600 MPa for loin cut, and 300 to 600 MPa for shoulder and shank cuts. Saturated fatty acid and polyunsaturated fatty acid content significantly decreased with pressure increase from 200 to 600 MPa for shank and shoulder cuts, and 300 to 600 MPa for loin cut. Free amino acids content significantly increased in shank and loin cuts with pressure increase after 200 MPa, and in shoulder cuts after 400 MPa. In addition, samples treated with HPP at high pressure levels of 400 and 600 MPa were associated with browned, livery and oxidized flavours. The pressure levels applied and type of cuts used are important considerations during HPP processing as they influenced physicochemical and sensory properties of lamb samples.


Sign in / Sign up

Export Citation Format

Share Document