Effect of Carbonic Maceration (CM) on the Vacuum Microwave Drying of Chinese Ginger (Zingiber officinale Roscoe) Slices: Drying Characteristic, Moisture Migration, Antioxidant Activity, and Microstructure

2020 ◽  
Vol 13 (9) ◽  
pp. 1661-1674
Author(s):  
Kejing An ◽  
Lai Wei ◽  
Manqin Fu ◽  
Lina Cheng ◽  
Jian Peng ◽  
...  
Author(s):  
Bui Thanh Tung ◽  
Dang Kim Thu ◽  
Nguyen Thi Kim Thu ◽  
Nguyen Thanh Hai

AbstractBackgroundRoscoe has been used in traditional medicine for the treatment of neurological disorder. This study aimed to investigate the phenolic contents, antioxidant, acetylcholinesterase enzyme (AChE) inhibitory activities of different fraction ofMethodsThe roots ofResultsOur data showed that the total phenolic content of EtOAc fraction was highest equivalents to 35.2±1.4 mg quercetin/g of fraction. Our data also demonstrated that EtOAc fraction had the strongest antioxidant activity with ICConclusionsOur results suggest that the EtOAc fraction of


2021 ◽  
Vol 5 (3(61)) ◽  
pp. 40-45
Author(s):  
Yan Liu ◽  
Sergei Sabadash ◽  
Zhenhua Duan

The object of research is the beetroots, dried by vacuum microwave drying at different conditions. Physicochemical properties and antioxidant activity of beetroots were studied using vacuum microwave drying at different microwave power (500, 1000, and 1500 W), vacuum degree (–0.05, –0.07, and –0.09 MPa) and sample thickness (2, 4, and 6 mm). A colorimeter was used to evaluate the color quality of beetroots. Colorimetric methods were used to determinate contents of betalain, ascorbic acid and total flavonoid, and antioxidant activity (ferric reducing antioxidant power assay) of beetroots. Results showed that the drying time decreased with increasing microwave power and vacuum degree, while increased significantly with the increase of sample thickness. The lightness (L*) of dried beetroots was higher than that of fresh beetroots. The values of redness (a*) increased with the increase of vacuum degree. The values of yellowness (b*) increased with the growth of vacuum degree and microwave power, while reduced as the sample thickness added. The total color difference (∆E) of dried beetroots reduced with increasing vacuum degree, and displayed the lowest value (5.95) at a vacuum degree of –0.09 MPa as compared to fresh beetroots. The content of betacyanin, betaxanthin and ascorbic acid displayed a declining tendency with the growth of microwave power, while increased with the increase of vacuum degree. And the total flavonoid content of beetroots illustrated a decreasing tendency with the increase of vacuum degree, microwave power and sample thickness. The ferric reducing antioxidant power (FRAP) of dried beetroots decreased significantly with the increase of microwave power, and showed the highest value (14.70 mg trolox equivalents/g) at a microwave power of 500 W. The most favorable conditions for vacuum microwave drying of beetroots were microwave power of 500 W, vacuum degree of –0.09 MPa and sample thickness of 2 mm. It leads to better physicochemical properties of bioactive compounds and higher antioxidant activity of dried beetroots. The dried beetroots can be used as functional foods and value-added food products.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1397 ◽  
Author(s):  
Chua ◽  
Chua ◽  
Figiel ◽  
Chong ◽  
Wojdyło ◽  
...  

The preservation of active constituents in fresh herbs is affected by drying methods. An effective drying method for Strobilanthes crispus which is increasingly marketed as an important herbal tea remains to be reported. This study evaluated the effects of conventional and new drying technologies, namely vacuum microwave drying methods, on the antioxidant activity and yield of essential oil volatiles and phytosterols. These drying methods included convective drying (CD) at 40 °C, 50 °C, and 60 °C; vacuum microwave drying (VMD) at 6, 9, and 12 W/g; convective pre-drying and vacuum microwave finish drying (CPD-VMFD) at 50 °C and 9 W/g; and freeze-drying (FD). GC–MS revealed 33 volatiles, and 2-hexen-1-ol, 2-hexenal, 1-octen-3-ol, linalool, and benzaldehyde were major constituents. The compounds β-sitosterol and α-linolenic acid were the most abundant phytosterol and fatty acid, respectively, in fresh S. crispus. The highest phenolic content was achieved with CD at 60 °C. The highest antioxidant activity was obtained with CD at 40 °C and VMD at 9 W/g. On the contrary, the highest total volatiles and phytosterols were detected with CD at 50 °C and VMD at 9 W/g, respectively. This study showed that CD and VMD were effective in producing highly bioactive S. crispus. A suitable drying parameter level, irrespective of the drying method used, was an important influencing factor.


Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1625 ◽  
Author(s):  
Chua ◽  
Chua ◽  
Figiel ◽  
Chong ◽  
Wojdyło ◽  
...  

The preservation of active constituents in Cassia alata through the removal of moisture is crucial in producing a final product with high antioxidant activity. This study aims to determine the influences of various drying methods and drying conditions on the antioxidant activity, volatiles and phytosterols content of C. alata. The drying methods used were convective drying (CD) at 40 °C, 50 °C and 60 °C; freeze drying; vacuum microwave drying (VMD) at 6, 9 and 12 W/g; and two-stage convective pre-drying followed by vacuum microwave finish drying (CPD-VMFD) at 50 °C and 9 W/g. The drying kinetics of C. alata are best described by the thin-layer model (modified Page model). The highest antioxidant activity, TPC and volatile concentration were achieved with CD at 40 °C. GC–MS analysis identified the presence of 51 volatiles, which were mostly present in all samples but with quantitative variation. The dominant volatiles in fresh C. alata are 2-hexenal (60.28 mg 100 g−1 db), 1-hexanol (18.70 mg 100 g−1 db) and salicylic acid (15.05 mg 100 g−1 db). The concentration of phytosterols in fresh sample was 3647.48 mg 100 g−1 db, and the major phytosterols present in fresh and dried samples were β-sitosterol (1162.24 mg 100 g−1 db). CPD-VMFD was effective in ensuring the preservation of higher phytosterol content in comparison with CD at 50 °C. The final recommendation of a suitable drying method to dehydrate C. alata leaves is CD at 40 °C.


Processes ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 210 ◽  
Author(s):  
Lisa Yen Wen Chua ◽  
Bee Lin Chua ◽  
Adam Figiel ◽  
Chien Hwa Chong ◽  
Aneta Wojdyło ◽  
...  

Drying is an important process in the preservation of antioxidants in medicinal plants. In this study, leaves of Phyla nodiflora, or commonly known as frog fruit, were dried using convective drying (CD) at 40, 50, and 60 °C; vacuum-microwave drying (VMD) at 6, 9, and 12 W/g; and convective pre-drying followed by vacuum-microwave finish drying (CPD–VMFD) at 50 °C and 9 W/g. Drying kinetics of P. nodiflora leaves was modelled, and the influences of drying methods on the antioxidant activity, total phenolic content, volatile and phytosterol contents, energy consumption, water activity, and color properties were determined. Results showed that drying kinetics was best described by modified Page model. VMD achieved highest drying rate, whereas VMFD considerably reduced the drying time of CD from 240 min to 105 min. CPD–VMFD was the best option to dry P. nodiflora in terms of retaining volatiles and phytosterols, with lower energy consumption than CD. Meanwhile, VMD at 6 W/g produced samples with the highest antioxidant activity with 2,2′-Azinobis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and ferric reducing antioxidant power (FRAP) value of 11.00 and 15.99 µM Trolox/100 g dw, respectively.


2021 ◽  
Vol 2 (4) ◽  
pp. 576-599
Author(s):  
Andromachi Tzani ◽  
Styliani Kalafateli ◽  
Grigorios Tatsis ◽  
Maria Bairaktari ◽  
Ioanna Kostopoulou ◽  
...  

The extraction of valuable phytochemicals from natural sources is an important and constantly evolving research area. Zingiber officinale Roscoe (ginger) contains high amounts of bioactive phytochemicals, which are desirable due to their significant properties. In this work, the ability of different natural deep eutectic solvents (NaDESs) to serve as green solvents for the preparation of high added value extracts from ginger is explored, in combination with ultrasound assisted extraction. The method was optimized by applying a response surface methodology using the NaDES Bet/La/W (1:2:2.5). Three independent variables, namely the extraction time, ultrasound power and NaDES-to-dry-ginger ratio, were investigated by employing a 17-run three-level Box–Behnken Design (BBD) in order to study the correlation between the extraction conditions and the quality of the obtained extracts. The optimum conditions (in order to achieve simultaneously maximum total phenolic content and antioxidant activity), were found to be 23.8 min extraction time, 60 Watt and NaDES/ginger 25:1 w/w. In the optimum conditions the DPPH radical scavenging ability of the extracts was found to reach IC50 = 18.16 mg/mL after 120 min, whereas the TPC was 20.10 ± 0.26 mg GAE/g of dry ginger. The green methodology was also compared with the extraction using conventional solvents. All the obtained extracts were evaluated for their antioxidant activity and their total phenolic content, while the extract derived by the optimum extraction conditions was further investigated for its ability to bind to calf thymus DNA (ctDNA).


2018 ◽  
Vol 39 (4) ◽  
pp. 1849
Author(s):  
Andréia Assunção Soares ◽  
Ezilda Jacomassi ◽  
Rosana Da Mata ◽  
Karoline Franciani Cardoso Lopes ◽  
Jessé Lahos Borges ◽  
...  

The functionality of nutraceutical foods is attributed to their bioactive compounds. These compounds are widely produced by plants, such as phenolic compounds, which have antioxidant activity and/or antimicrobial activity, acting against damage to macromolecules such as lipids, proteins, and nucleic acids. Secondary plant metabolites, including classes such as phenolic compounds, alkaloids, and terpenoids, have a wide variety of biological activities with medicinal potential. These secondary metabolites are considered bioactive compounds. The Zingiberaceae family received special attention for their large bioactive compound production. Such compounds are useful in foods as herbs, spices, flavorings, and seasonings and in the pharmaceutical and cosmetic industries as antioxidants and antimicrobials. Gingers are recognized as safe by the American Food and Drug Administration (FDA), resulting in no side effects when consumed in moderate amounts. Recent studies show that, in addition to rhizomes, the leaves and flowers of some ginger species have antioxidant activity and consequent medicinal potential. Studies have demonstrated that in vitro and in vivo research is needed to evaluate the efficacy of ginger extracts and understand their role in the modulation of biological and molecular pathways, thus enabling the development of new therapeutic strategies. Thereby, the present work aims to provide a bibliographic review on the antimicrobial activity of Zingiber officinale Roscoe and Alpinia purpurata (Vieill.) K. Schum. (Zingiberaceae), popularly known as ginger and red ginger respectively, and their potential use in the One Health initiative.


Sign in / Sign up

Export Citation Format

Share Document