scholarly journals Hypothermia for Patients Requiring Evacuation of Subdural Hematoma: A Multicenter Randomized Clinical Trial

Author(s):  
Georgene W. Hergenroeder ◽  
Shoji Yokobori ◽  
Huimahn Alex Choi ◽  
Karl Schmitt ◽  
Michelle A. Detry ◽  
...  

Abstract Background Hypothermia is neuroprotective in some ischemia–reperfusion injuries. Ischemia–reperfusion injury may occur with traumatic subdural hematoma (SDH). This study aimed to determine whether early induction and maintenance of hypothermia in patients with acute SDH would lead to decreased ischemia–reperfusion injury and improve global neurologic outcome. Methods This international, multicenter randomized controlled trial enrolled adult patients with SDH requiring evacuation of hematoma within 6 h of injury. The intervention was controlled temperature management of hypothermia to 35 °C prior to dura opening followed by 33 °C for 48 h compared with normothermia (37 °C). Investigators randomly assigned patients at a 1:1 ratio between hypothermia and normothermia. Blinded evaluators assessed outcome using a 6-month Glasgow Outcome Scale Extended score. Investigators measured circulating glial fibrillary acidic protein and ubiquitin C-terminal hydrolase L1 levels. Results Independent statisticians performed an interim analysis of 31 patients to assess the predictive probability of success and the Data and Safety Monitoring Board recommended the early termination of the study because of futility. Thirty-two patients, 16 per arm, were analyzed. Favorable 6-month Glasgow Outcome Scale Extended outcomes were not statistically significantly different between hypothermia vs. normothermia groups (6 of 16, 38% vs. 4 of 16, 25%; odds ratio 1.8 [95% confidence interval 0.39 to ∞], p = .35). Plasma levels of glial fibrillary acidic protein (p = .036), but not ubiquitin C-terminal hydrolase L1 (p = .26), were lower in the patients with favorable outcome compared with those with unfavorable outcome, but differences were not identified by temperature group. Adverse events were similar between groups. Conclusions This trial of hypothermia after acute SDH evacuation was terminated because of a low predictive probability of meeting the study objectives. There was no statistically significant difference in functional outcome identified between temperature groups.

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xutong Li ◽  
Ye Zhang ◽  
Yong Wang ◽  
Dan Zhao ◽  
Chengcheng Sun ◽  
...  

Background. Ischemic stroke is a severe acute cerebrovascular disease which can be improved with neuroprotective therapies at an early stage. However, due to the lack of effective neuroprotective drugs, most stroke patients have varying degrees of long-term disability. In the present study, we investigated the role of exosomes derived from CXCR4-overexpressing BMSCs in restoring vascular function and neural repair after ischemic cerebral infarction. Methods. BMSCs were transfected with lentivirus encoded by CXCR4 (BMSCCXCR4). Exosomes derived from BMSCCXCR4 (ExoCXCR4) were isolated and characterized by transmission electron microscopy and dynamic light scattering. Western blot and qPCR were used to analyze the expression of CXCR4 in BMSCs and exosomes. The acute middle cerebral artery occlusion (MCAO) model was prepared, ExoCXCR4 were injected into the rats, and behavioral changes were analyzed. The role of ExoCXCR4 in promoting the proliferation and tube formation for angiogenesis and protecting brain endothelial cells was determined in vitro. Results. Compared with the control groups, the ExoCXCR4 group showed a significantly lower mNSS score at 7 d, 14 d, and 21 d after ischemia/reperfusion ( P < 0.05 ). The bEnd.3 cells in the ExoCXCR4 group have stronger proliferation ability than other groups ( P < 0.05 ), while the CXCR4 inhibitor can reduce this effect. Exosomes control (ExoCon) can significantly promote the migration of bEnd.3 cells ( P < 0.05 ), while there was no significant difference between the ExoCXCR4 and ExoCon groups ( P > 0.05 ). ExoCXCR4 can further promote the proliferation and tube formation for the angiogenesis of the endothelium compared with ExoCon group ( P < 0.05 ). In addition, cobalt chloride (COCl2) can increase the expression of β-catenin and Wnt-3, while ExoCon can reduce the expression of these proteins ( P < 0.05 ). ExoCXCR4 can further attenuate the activation of Wnt-3a/β-catenin pathway ( P < 0.05 ). Conclusions. In ischemia/reperfusion injury, ExoCXCR4 promoted the proliferation and tube formation of microvascular endothelial cells and play an antiapoptotic role via the Wnt-3a/β-catenin pathway.


2019 ◽  
Vol 14 (2) ◽  
pp. 107-115 ◽  
Author(s):  
Priyadharshini Chandrasekaran ◽  
Sriram Ravindran ◽  
Sri Rahavi Boovarahan ◽  
Gino A. Kurian

Hydrogen sulfide has been shown to protect  myocardium against ischemia-reperfusion injury by preserving interfibrillar mitochondria functional activi-ties than subsarcolemmal mitochondria. In this study, the role of the KATP channel in modulating the mitochondrial subpopulations during the cardioprotection mediated by NaSH (H2S donor) was investigated. Isolated rat hearts were treated with mitochondrial KATP channel closer glibenclamide (10 μM)/opener diazoxide (0.8 mM) via Langendorff perfusion apparatus before ischemia-reperfusion. The results showed that NaSH pre-conditioning in presence of glibenclamide significantly improved cardiac recovery without any significant difference between interfibrillar mitochondria and subsarcolemmal mitochondria.  In conclusion, targeting KATP channel may not be good option to target interfibrillar mitochondria/subsarcolemmal mitochondria against ischemia-reperfusion injury.


2016 ◽  
pp. 953-958 ◽  
Author(s):  
H. MRAZKOVA ◽  
R. LISCHKE ◽  
J. HERGET

As with other organ transplants even lung transplantation raises the question of the possibility of the influence of gender on ischemia-reperfusion injury. This is a current topic especially for increasingly utilized method of lung transplantation from non-heart-beating donors, where reperfusion preceded by a period of warm and cold ischemia with subsequent treatment options for lung graft reperfusion. For measurements we used our laboratory previously created and validated animal model for ex vivo lung transplantation. As with other organ systems of our monitoring resulted protective effect of female sex on ischemia reperfusion lung injury. In two of the three parameters that were monitored, we found a significant difference. In females, higher oxygen transfer ability after reperfusion was manifested as well as lower perfusion pressure (vascular compliance). Conversely, weight gain (the development of pulmonary edema) in males was not significant difference from the females. These conclusions could cause further studies leading to influence the selection of appropriate donor grafts.


Blood ◽  
1995 ◽  
Vol 86 (9) ◽  
pp. 3487-3492 ◽  
Author(s):  
S Yamada ◽  
TN Mayadas ◽  
F Yuan ◽  
DD Wagner ◽  
RO Hynes ◽  
...  

P-selectin-mediated rolling is believed to be important in the recruitment of leukocytes to tissue after ischemia-reperfusion injury. The dorsal skin chamber was used to examine differences in the rolling and stable adhesion of circulating leukocytes in subcutaneous (SC) vessels of P-selectin-deficient and age-matched wild-type mice, both under basal conditions and after ischemia-reperfusion. Rolling in the postcapillary venules in SC tissue of P-selectin-deficient mice was significantly lower than that in wild-type mice under the basal conditions and post-ischemia-reperfusion (P < .05), but was not eliminated by the deletion of the P-selectin gene. No significant difference between P-selectin-deficient and wild-type mice in shear rate or leukocyte-endothelial adhesion was observed up to 24 hours after ischemia-reperfusion. These results show that P-selectin-mediated rolling is not a prerequisite for ischemia-reperfusion-induced leukocyte-endothelial adhesion in the skin.


2015 ◽  
Vol 3 (1) ◽  
pp. 65-69
Author(s):  
Jing Shen ◽  
Xiao-Ming Lei ◽  
Yang Song ◽  
Xing Tan ◽  
Qin Liu ◽  
...  

Abstract Objective: To observe the effects of electro-acupuncture (EA) on GRP78 and Caspase-12 gene expression in rats with ischemia- reperfusion injury (IRI) by stimulation on Nei Guan (PC6) and Bai Hui (GV20) points, so that to understand whether or not the protective effects of acupuncture is related to endocytoplasmic reticulum (ER) stressapoptosis passage. Methods: 50 rats were randomly assigned to five groups (10 in each group): normal control(A), pseudo-operation(B), operation(C), Edaravone(D) and EA(E). The ischemia/reperfusion model of middle cerebral artery occlusion (MCAO) was established by suture embolic method. TUNEL staining method was employed to measure the apoptosis index of nerve cells in rats. Real-time polymerase chain reaction (RT-PCR) was employed to measure the mRNA expression of GRP78 and Caspase-12. Results: Compared with normal group and pseudo-operation group, the apoptosis indexes and mRNA expression of GRP78 and Caspase-12 in operation group, Edaravone group and EA group were increased, with statistical significance(P<0.05 or P<0.01); compared with operation group, the apoptosis indexes and Caspase-12 mRNA expression in Edaravone group and EA group were decreased(P<0.05 or P<0.01), but GRP78 mRNA expression were increased(P<0.01); there were no significant difference between Edaravone group and EA group on the above indexes(P>0.05). Conclusion: Acupuncture on Nei Guan and Bai Hui points could effectively suppress the nerve cell apoptosis in cerebral ischemia. The underlying mechanism might be related to upregulation of the ERS-protective GRP78 expression and downregulation of apoptosis-promotion Caspase-12 expression.


2021 ◽  
Author(s):  
Hang Li ◽  
Jilang Tang ◽  
Weiqi Zhang ◽  
Liping Ai ◽  
Shixia Zhang

Abstract Background: Hepatic ischemia-reperfusion injury (IRI) remains a major complication of liver surgery, dexmedetomidine (DEX) has a certain protective effect on liver during ischemia-reperfusion, but the underlying mechanisms are not fully understood. This study explored the protective effects of DEX and investigated whether DEX protects against hepatic IRI by inhibiting endoplasmic reticulum stress (ERS) and its downstream apoptotic pathway in a rat model. Methods: Thirty-six male Sprague-Dawley (SD) rats were divided into six groups: S, IR, DL, DM1, DH and DM2 group. Group S was subjected to laparotomy, and exposure of the portal triad without occlusion. I-R injury model was induced by clamping the portal vessels supplying the middle and left hepatic lobes for 30 min in IR, DL, DM1, DH and DM2 group. Then DL, DM1, DH group received DEX of 25 μg/kg, 50 μg/kg and 100 μg/kg intraperitoneally at 30 min before ischemia, respectively, DM2 group received 50 μg/kg DEX intraperitoneally 30 min after reperfusion, and IR group received normal saline. After 6 h of reperfusion, assessment of liver function, histopathology, oxidative stress was performed. The liver cell microstructure was detected by transmission electron microscopy. Hepatocyte apoptosis was determined by TUNEL assay. Real-time PCR, Western blotting were performed to analyze various ERS molecules. Results: We observed that DEX protected the liver by alleviating hepatocytes damage, reducing the content of ALT and MDA, increasing the activity of SOD, reducing the number of TUNEL-positive cells, down-regulating the expression of GRP-78, PERK, ATF-6, Caspase-12 mRNA, and p-PERK, p-IRE-1 α, CHOP proteins, up-regulating Bcl-2 protein. The effect of 50 μg/kg DEX is superior to 25 μg/kg DEX, but not significantly different from 100μg/kg DEX. There was no significant difference in the above monitoring indexes between DM1 and DM2 group. Conclusions: DEX protects the liver from IRI by inhibiting ERS and cell apoptosis. The protective effect of DEX was dose-dependent in a certain dose range, both DEX administered prior to ischemia and following reperfusion markedly reduced liver injury induced by hepatic IRI in mice.


2020 ◽  
Vol 50 (6) ◽  
pp. 1523-1534
Author(s):  
Handan DEREBAŞINLIOĞLU ◽  
Anıl DEMİRÖZ ◽  
Yağmur AYDIN ◽  
Hakan EKMEKÇİ ◽  
Özlem BALCI EKMEKÇİ ◽  
...  

Background/aim: The aim of the study was to evaluate the protective effect of Botulinum A toxin injection against ischemia-reperfusion injury.Materials and methods: Thirty-two Sprague-Dawley rats were divided into: control, ischemia-reperfusion, ischemic preconditioning, and botulinum groups. In all groups the musculocutaneous pedicle flap was occluded for 4 h, and then reperfused to induce ischemia-reperfusion injury. Serum and tissue myeloperoxidase (MPO) and nitric oxide (NO) levels were measured at 24 h and at 10 days.Results: Tissue MPO levels did not differ significantly between the ischemic preconditioning and botulinum groups at 24 h but was significantly lower in the botulinum group at 10 days. Tissue NO levels were significantly higher in the ischemic preconditioning group compared to the botulinum group at 24 h and at 10 days. Serum MPO showed no significant difference between these two groups at 24 h but was significantly lower in the ischemic preconditioning group compared to the botulinum group at 10 days. Serum NO levels were not significantly different at 24 h but significantly higher in the botulinum group at 10 days.Conclusion: Findings show that botulinum has a protective effect against the ischemia-reperfusion injury via increased NO and decreased MPO levels in tissue. Based on tissue NO levels, ischemic preconditioning was significantly higher than botulinum.


2010 ◽  
Vol 67 (8) ◽  
pp. 659-664 ◽  
Author(s):  
Ivana Budic ◽  
Dusica Pavlovic ◽  
Tatjana Cvetkovic ◽  
Nina Djordjevic ◽  
Dusica Simic ◽  
...  

Background/Aim. Reperfusion of previously ischemic tissue leads to injuries mediated by reactive oxygen species. The aim of the study was to investigate the effects of different anesthesia techniques on oxidative stress caused by tourniquetinduced ischemia-reperfusion (IR) injury during extremity operations at children's age. Methods. The study included 45 patients American Society of Anesthesiologists (ASA) classification I or II, 8 to 17 years of age, undergoing orthopedic procedures that required bloodless limb surgery. The children were randomized into three groups of 15 patients each: general inhalational anesthesia with sevoflurane (group S), total intravenous anesthesia with propofol (group T) and regional anesthesia (group R). Venous blood samples were obtained at four time points: before peripheral nerve block and induction of general anesthesia (baseline), 1 min before tourniquet release (BTR), 5 and 20 min after tourniquet release (ATR). Postischemic reperfusion injury was estimated by measurement of concentration of malondialdehyde (MDA) in plasma and erythrocytes as well as catalase (CAT) activity. Results. Plasma MDA concentration in the group S was significantly higher at 20 min ATR in comparison with the groups T and R (6.78 ? 0.33 ?molL-1-1 vs 4.07 ? 1.53 and 3.22 ? 0.9. ?molL-1-1, respectively). There was a significant difference in MDA concentration in erytrocythes between the groups S and T after 5 min of reperfusion (5.88 ? 0.88 vs 4.27 ? 1.04 nmol/mlEr, p < 0.05). Although not statistically significant, CAT activity was slightly increased as compared to baseline in both groups S and R. In the group T, CAT activity decreased at all time points when compared with baseline, but the observed decrease was only statistically significant at BTR (34.70 ? 9.27 vs 39.69 ? 12.91 UL-1, p < 0.05). Conclusion. Continuous propofol infusion and regional anesthesia techniques attenuate lipid peroxidation and IR injury connected with tourniquet application in pediatric extremity surgery.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhizhong Shang ◽  
Yanbiao Jiang ◽  
Xin Guan ◽  
Anan Wang ◽  
Bin Ma

Objective: Although stem cell therapy for renal ischemia-reperfusion injury (RIRI) has made immense progress in animal studies, conflicting results have been reported by the investigators. Therefore, we aimed to systematically evaluate the effects of different stem cells on renal function of animals with ischemia-reperfusion injury and to compare the efficacies of stem cells from various sources.Methods: PubMed, Web of Science, Embase, Cochrane, CNKI, VIP, CBM, and WanFang Data were searched for records until April 2021. Two researchers independently conducted literature screening, data extraction, and literature quality evaluation.Results and conclusion: Seventy-two animal studies were included for data analysis. Different stem cells significantly reduced serum creatinine and blood urea nitrogen levels in the early and middle stages (1 and 7 days) compared to the negative control group, however there was no significant difference in the late stage among all groups (14 days); In the early stage (1 day), the renal histopathological score in the stem cell group was significantly lower than that in the negative control group, and there was no significant difference among these stem cells. In addition, there was no significant difference between stem cell and negative control in proliferation of resident cells, however, significantly less apoptosis of resident cells than negative control. In conclusion, the results showed that stem cells from diverse sources could improve the renal function of RIRI animals. ADMSCs and MDMSCs were the most-researched stem cells, and they possibly hold the highest therapeutic potential. However, the quality of evidence included in this study is low, and there are many risks of bias. The exact efficacy of the stem cells and the requirement for further clinical studies remain unclear.


Sign in / Sign up

Export Citation Format

Share Document