scholarly journals A negative feedback loop involving NF-κB/TIR8 regulates IL-1β-induced epithelial- myofibroblast transdifferentiation in human tubular cells

Author(s):  
Keguo Jiang ◽  
Yuying Zhang ◽  
Fan He ◽  
Mingming Zhang ◽  
Tianyu Li ◽  
...  

AbstractRenal tubular epithelial-myofibroblast transdifferentiation (EMT) plays a central role in the development of renal interstitial fibrosis (RIF). The profibrotic cytokine interleukin (IL)-1 and the IL-1 receptor (IL-1R) also participate in RIF development, and Toll/IL-1R 8 (TIR8), a member of the Toll-like receptor superfamily, has been identified as a negative regulator of IL-1R signaling. However, the functions of TIR8 in IL-1-induced RIF remain unknown. Here, human embryonic kidney epithelial cells (HKC) and unilateral ureteric obstruction (UUO)-induced RIF models on SD rats were used to investigate the functions of TIR8 involving IL-1β-induced EMT. We showed that IL-1β primarily triggers TIR8 expression by activating nuclear factor-κB (NF-κB) in HKC cells. Conversely, high levels of TIR8 in HKC cells repress IL-1β-induced NF-κB activation and inhibit IL-1β-induced EMT. Moreover, in vitro and in vivo findings revealed that TIR8 downregulation facilitated IL-1β-induced NF-κB activation and contributed to TGF-β1-mediated EMT in renal tubular epithelial cells. These results suggested that TIR8 exerts a protective role in IL-1β-mediated EMT and potentially represents a new target for RIF treatment.

2022 ◽  
Author(s):  
Zhuo-yue Song ◽  
Mengru Zhu ◽  
Jun Wu ◽  
Tian Yu ◽  
Yao Chen ◽  
...  

The effects of Cucumaria frondosa polysaccharides (CFP) on renal interstitial fibrosis via regulating phosphatidylinositol-3-hydroxykinase/protein kinase-B/Nuclear factor-κB (PI3K/AKT/NF-κB) signaling pathway were investigated in vivo and in vitro in this research. A...


2011 ◽  
Vol 30 (7-8) ◽  
pp. 396-403 ◽  
Author(s):  
Maria Fragiadaki ◽  
Abigail S. Witherden ◽  
Tomoyo Kaneko ◽  
Sonali Sonnylal ◽  
Charles D. Pusey ◽  
...  

2016 ◽  
Vol 130 (19) ◽  
pp. 1727-1739 ◽  
Author(s):  
Akiko Tanino ◽  
Takafumi Okura ◽  
Tomoaki Nagao ◽  
Masayoshi Kukida ◽  
Zuowei Pei ◽  
...  

Interleukin (IL)-18 is a member of the IL-1 family of cytokines and was described originally as an interferon γ-inducing factor. Aldosterone plays a central role in the regulation of sodium and potassium homoeostasis by binding to the mineralocorticoid receptor and contributes to kidney and cardiovascular damage. Aldosterone has been reported to induce IL-18, resulting in cardiac fibrosis with induced IL-18-mediated osteopontin (OPN). We therefore hypothesized that aldosterone-induced renal fibrosis via OPN may be mediated by IL-18. To verify this hypothesis, we compared mice deficient in IL-18 and wild-type (WT) mice in a model of aldosterone/salt-induced hypertension. IL-18−/− and C57BL/6 WT mice were used for the uninephrectomized aldosterone/salt hypertensive model, whereas NRK-52E cells (rat kidney epithelial cells) were used in an in vitro model. In the present in vivo study, IL-18 protein expression was localized in medullary tubules in the WT mice, whereas in aldosterone-infused WT mice this expression was up-regulated markedly in the proximal tubules, especially in injured and dilated tubules. This renal damage caused by aldosterone was attenuated significantly by IL-18 knockout with down-regulation of OPN expression. In the present in vitro study, aldosterone directly induced IL-18 gene expression in renal tubular epithelial cells in a concentration- and time-dependent manner. These effects were inhibited completely by spironolactone. IL-18 may be a key mediator of aldosterone-induced renal fibrosis by inducing OPN, thereby exacerbating renal interstitial fibrosis. Inhibition of IL-18 may therefore provide a potential target for therapeutic intervention aimed at preventing the progression of renal injury.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 362-362
Author(s):  
Alexander Meyer ◽  
Wei Wang ◽  
Jay L. Degen ◽  
Barry S. Coller ◽  
Jasimuddin Ahamed

Abstract Abstract 362 Circulating platelets contain a high concentration of the multifunctional cytokine transforming growth factor-β1 (TGF-β1) in their α-granules and release it as an inactive (latent) complex upon platelet adhesion and/or activation. We recently demonstrated that shear force can activate latent TGF-β1 in vitro, and this mechanism may contribute to the activation of TGF-β1 that we observed in vivo in the carotid arteries following injury and thrombus formation. TGF-β1 is reported to be involved in the development of cardiac fibrosis in both humans and mouse models, but the cellular source(s) of TGF-β1 and its activation mechanism in vivo have not been clearly established. To test the hypothesis that platelet TGF-β1 contributes to cardiac fibrosis, we performed comparative studies of WT mice and gene-targeted animals with a megakaryocyte-specific deletion of TGF-β1 [PF4-Cre/Tgfb1flox (Tgfb1flox)] using the transverse aortic constriction (TAC) model in male C57Bl/6 mice. Both groups also underwent sham surgery as controls. We obtained blood by percutaneous puncture of the LV under ultrasound guidance and plasma samples were prepared by immediate centrifugation at 12,000 g for 5 min. This technique consistently results in plasma TGF-β1 levels in the range of ∼1.0 ng/ml, which are below those previously reported by most investigators. Tgfb1flox mice had 45% lower levels of plasma total TGF-β1 than WT animals, with a median total TGF-β1 level in WT of 1.37 ng/ml (IQR, interquartile range, 1.2–1.6; n=45) compared to 0.76 ng/ml (IQR 0.6–0.9; n=25)] in Tgfb1flox mice (p<0.001). Heart weight/body weight ratios were 42% higher in TAC- (n=15) than in sham- (n=16) operated WT mice (p<0.001) after 4 weeks, but only 11% higher in TAC- (n=13) than sham- (n=12) operated Tgfb1flox mice (p=0.02). The heart weight/body weight ratios correlated with total TGF-β1 levels in WT mice undergoing both sham and TAC surgery (r=0.66; p<0.001), but not in Tgfb1flox mice. Cardiac fibrosis was scored 4 weeks after surgery by an expert veterinary pathologist as 0 for no fibrosis, and 1+, 2+, or 3+ for mild, moderate, and severe fibrosis, respectively. 96% (22/23) of WT mice developed interstitial fibrosis after TAC, with 65% (15/23) developing mild and 30% (7/23) developing moderate (6/23) or severe (1/23) fibrosis. In contrast, only 54% (7/13) of Tgfb1flox mice developed interstitial fibrosis, with 31% (4/13) developing mild and 15% (2/13) developing moderate fibrosis; none developed severe fibrosis (p<0.01). The Tgfb1flox mice also had significantly less perivascular fibrosis than did the WT mice, although the differences were less evident (p=0.03). Cardiac function measured by echocardiography one week after TAC surgery demonstrated that Tgfb1flox mice had better systolic function than WT mice (Table).Table:Cardiac function measurements one week after TAC surgery.WTTgfb1flox†pEF [%]41 [37–48; n=11]56 [48–65; n=11]0.03SV [μl]20 [18–21; n=11]28 [24–33; n=11]0.003FS (%)27 [23–30; n=14]32 [28–37; n=13]0.05EF: ejection fraction; SV: stroke volume; FS: fractional shortening. Data are reported as median [IQR] †Wilcoxon Rank-Sum test. Presurgery values for EF, SV, and FS were similar in WT and Tgfb1flox mice We conclude that platelet TGF-β1 contributes to the development of cardiac hypertrophy, fibrosis, and systolic dysfunction induced by a high shear, TAC model. These data have important implications for understanding TGF-β1 biology and assessing the role of TGF-β1 in murine models of human diseases. Since shear can dramatically activate TGF-β1 in vitro, it is possible that increased shear force in the TAC mice generates active TGF-β1, which may contribute to the development of cardiac hypertrophy, fibrosis, and systolic dysfunction. Disclosures: No relevant conflicts of interest to declare.


2002 ◽  
Vol 13 (10) ◽  
pp. 3521-3531 ◽  
Author(s):  
Marisa M. Faraldo ◽  
Marie-Ange Deugnier ◽  
Sylvie Tlouzeau ◽  
Jean Paul Thiery ◽  
Marina A. Glukhova

To study the mechanism of β1-integrin function in vivo, we have generated transgenic mouse expressing a dominant negative mutant of β1-integrin under the control of mouse mammary tumor virus (MMTV) promoter (MMTV-β1-cyto). Mammary glands from MMTV-β1-cyto transgenic females present significant growth defects during pregnancy and lactation and impaired differentiation of secretory epithelial cells at the onset of lactation. We report herein that perturbation of β1-integrin function in involuting mammary gland induced precocious dedifferentiation of the secretory epithelium, as shown by the premature decrease in β-casein and whey acidic protein mRNA levels, accompanied by inactivation of STAT5, a transcription factor essential for mammary gland development and up-regulation of nuclear factor-κB, a negative regulator of STAT5 signaling. This is the first study demonstrating in vivo that cell–extracellular matrix interactions involving β1-integrins play an important role in the control of milk gene transcription and in the maintenance of the mammary epithelial cell differentiated state.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jinyun Pu ◽  
Yu Zhang ◽  
Jianhua Zhou

Epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells is a vital mechanism of renal fibrosis. Mounting evidence suggests that miR-200a expression decreases in tubular epithelial cells in unilateral ureteral obstruction (UUO) rats. Moreover, it has been demonstrated that Huai Qi Huang (HQH) can ameliorate tubulointerstitial damage in adriamycin nephrosis and delay kidney dysfunction in primary glomerular disease. However, the effect of HQH on EMT of tubular epithelial cells in UUO rats and its molecular mechanism is unclear. In order to explore the effect of HQH on EMT and its molecular mechanism in renal fibrosis,in vitroandin vivoexperiments were performed in our study. Our results showed that HQH increased miR-200a expression in UUO rats and in TGF-β1 stimulated NRK-52E cells. Meanwhile, HQH decreased ZEB1 and ZEB2 (the transcriptional repressors of E-cadherin),α-SMA expression in renal tubular epithelial cellsin vitroandin vivo. Furthermore, we found that HQH protected kidney from fibrosis in UUO rats. The results demonstrated that HQH regulated miR-200a/ZEBs pathway and inhibited EMT process, which may be a mechanism of protecting effect on tubular cells in renal fibrosis.


2011 ◽  
Vol 22 (11) ◽  
pp. 1836-1844 ◽  
Author(s):  
Maria Fragiadaki ◽  
Tetsurou Ikeda ◽  
Abigail Witherden ◽  
Roger M Mason ◽  
David Abraham ◽  
...  

Transforming growth factor-β (TGF-β) is an inducer of type I collagen, and uncontrolled collagen production leads to tissue scarring and organ failure. Here we hypothesize that uncovering a molecular mechanism that enables us to switch off type I collagen may prove beneficial in treating fibrosis. For the first time, to our knowledge, we provide evidence that CUX1 acts as a negative regulator of TGF-β and potent inhibitor of type I collagen transcription. We show that CUX1, a CCAAT displacement protein, is associated with reduced expression of type I collagen both in vivo and in vitro. We show that enhancing the expression of CUX1 results in effective suppression of type I collagen. We demonstrate that the mechanism by which CUX1 suppresses type I collagen is through interfering with gene transcription. In addition, using an in vivo murine model of aristolochic acid (AA)-induced interstitial fibrosis and human AA nephropathy, we observe that CUX1 expression was significantly reduced in fibrotic tissue when compared to control samples. Moreover, silencing of CUX1 in fibroblasts from kidneys of patients with renal fibrosis resulted in increased type I collagen expression. Furthermore, the abnormal CUX1 expression was restored by addition of TGF-β via the p38 mitogen-activated protein kinase pathway. Collectively, our study demonstrates that modifications of CUX1 expression lead to aberrant expression of type I collagen, which may provide a molecular basis for fibrogenesis.


2021 ◽  
Author(s):  
Duojun Qiu ◽  
Shan Song ◽  
Yawei Bian ◽  
Chen Yuan ◽  
wei zhang ◽  
...  

Abstract Background: Diabetic nephropathy is one of the main complications of diabetes, inflammation and fibrosis play an important role in its progress. NAD (P) H: quinone oxidoreductase 1 (NQO1) protects cells from oxidative stress and toxic quinone damage. In present study, we aimed to investigate the protective effects and underlying mechanisms of NQO1 on diabetes-induced renal inflammation and fibrosis. Methods: In vivo, adeno-associated virus serotype 9 was used to infect the kidneys of type 2 diabetes model db/db mice to overexpress NQO1. In vitro, human renal tubular epithelial cells (HK-2) transfected with NQO1 pcDNA were cultured in high glucose. The gene and protein expression were assessed by quantitative real-time PCR, western blot, immunofluorescence, and immunohistochemical staining. Mitochondrial reactive oxygen species was detected by MitoSox red. Result: Our study revealed that the expression of NQO1 was markedly down-regulated, Toll-like receptor 4 (TLR4) and TGF-β1 upregulated in vivo and in vitro under diabetic conditions. Overexpression of NQO1 suppressed pro-inflammatory cytokines secretion (IL-6, TNF-α, MCP-1), extracellular matrix (ECM) accumulation (collagen Ⅳ, Fibronectin) and epithelial-mesenchymal transition (EMT) (α-SMA, E-cadherin) in db/db mice kidney and high glucose cultured human renal tubular cells (HK-2). Furthermore, NQO1 overexpression ameliorated high glucose-induced TLR4/NF-κB and TGF-β/Smad pathway activation. Mechanistic studies demonstrated that TLR4 inhibitor (TAK-242) suppressed TLR4/NF-κB signaling pathway, pro-inflammatory cytokines secretion, EMT and ECM-related protein expression in HG-exposed HK-2 cells. In addition, we found that antioxidants NAC and tempol increased the expression of NQO1, decreased the expression of TLR4, TGF-β1, Nox1, Nox4 and ROS production in HK-2 cells cultured with high glucose. Conclusions: These above data suggest that NQO1 alleviates diabetes-induced renal inflammation and fibrosis by regulating TLR4/NF-κB and TGF-β/Smad signaling pathways.


2020 ◽  
Vol 295 (48) ◽  
pp. 16328-16341
Author(s):  
Ji Young Kim ◽  
Yuntao Bai ◽  
Laura A. Jayne ◽  
Ferdos Abdulkader ◽  
Megha Gandhi ◽  
...  

Acute kidney injury (AKI) is a common clinical condition associated with diverse etiologies and abrupt loss of renal function. In patients with sepsis, rhabdomyolysis, cancer, and cardiovascular disorders, the underlying disease or associated therapeutic interventions can cause hypoxia, cytotoxicity, and inflammatory insults to renal tubular epithelial cells (RTECs), resulting in the onset of AKI. To uncover stress-responsive disease-modifying genes, here we have carried out renal transcriptome profiling in three distinct murine models of AKI. We find that Vgf nerve growth factor inducible gene up-regulation is a common transcriptional stress response in RTECs to ischemia-, cisplatin-, and rhabdomyolysis-associated renal injury. The Vgf gene encodes a secretory peptide precursor protein that has critical neuroendocrine functions; however, its role in the kidneys remains unknown. Our functional studies show that RTEC-specific Vgf gene ablation exacerbates ischemia-, cisplatin-, and rhabdomyolysis-associated AKI in vivo and cisplatin-induced RTEC cell death in vitro. Importantly, aggravation of cisplatin-induced renal injury caused by Vgf gene ablation is partly reversed by TLQP-21, a Vgf-derived peptide. Finally, in vitro and in vivo mechanistic studies showed that injury-induced Vgf up-regulation in RTECs is driven by the transcriptional regulator Sox9. These findings reveal a crucial downstream target of the Sox9-directed transcriptional program and identify Vgf as a stress-responsive protective gene in kidney tubular epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document