scholarly journals Influence of storage on the physical and chemical properties of Scots pine bark

Author(s):  
Johanna Routa ◽  
Hanna Brännström ◽  
Jarkko Hellström ◽  
Juha Laitila

Abstract Bark is currently used mainly to produce energy, but the extraction of valuable compounds before combustion offers an interesting cascading use for debarking biomass. Buffer storage is an inevitable part of bark biomass logistics, but substantial dry matter and extractive losses can degrade the properties and reduce the economic value of the raw material during storage. In this study, moisture and ash content, calorific value, and extractives content and composition of Scots pine (Pinus sylvestris) sawmill bark were determined over 2 months of buffer storage, and the change in energy content during storage was calculated. The results showed that the energy content (MWh m−3) of the bark increased 3% during storage, while at the same time the moisture content decreased 16%. The content of acetone-soluble extractives decreased markedly, with only 56% of the original amount remaining after 8 weeks of storage. In particular, hydrophilic, phenolic extractive compounds were rapidly lost after debarking and piling of the bark. About 60% of condensed tannins (CT) and about 26% of the quantified lipophilic compounds were lost after 2 weeks of storage. The fastest rate of decrease and the most significant changes in extractives content and composition occurred within the first 2 weeks of storage. Utilization of these valuable compounds necessitates fast supply of material for further processing after debarking. The comprehensive utilization of bark requires efficiency at all levels of the supply chain to ensure that tree delivery times are kept short and loss of bark is avoided during harvest and transport.

2020 ◽  
Vol 34 (2) ◽  
pp. 249-258
Author(s):  
D. Firemichael ◽  
A. Hussen ◽  
W. Abebe

Biodiesel was prepared by extracting oil from Cladophora glomerata green algae followed by transesterification of the oil using NaOH as a catalyst. The algae Oil extraction was carried out using two different techniques (Soxhlet and refluxing) and similar oil yield was obtained (23-24%). The resulting biodiesel showed desirable physical and chemical properties. Specific gravity, acid value, iodine value, ash content and calorific value of the algae biodiesel were within the specification of American Society for Testing and Materials (ASTM) and European Standards (EN). The analysis of fatty acid methyl ester composition revealed, 63, 27 and 10% for 9-octadecodenoic, hexadeconic and octadeconoic acid methyl ester, respectively. From the production line, two waste streams (glycerol and residual biomass) were combined to form a glycerine pellet. The measured energy content of the glycerine pellet was found to be comparable with firewood. Therefore, C. glomerata could potentially be utilized for the production of both biodiesel and glycerine pellet with no net waste in the transesterification process.                     KEY WORDS: Algae oil, Biodiesel, Transesterification, Glycerine pellet, Macroalgae, Cladophora glomerata   Bull. Chem. Soc. Ethiop. 2020, 34(2), 249-258 DOI: https://dx.doi.org/10.4314/bcse.v34i2.4


2017 ◽  
Vol 268 ◽  
pp. 387-392
Author(s):  
Nurhayati Abdullah ◽  
Aminu Aliyu Safana ◽  
Fauziah Sulaiman ◽  
Ibrahim Inuwa Abdullahi

The fundamental objectives of this study is to analyzed and compare the physical and chemical properties of pyrolysis products (biochar and bio-oil) derived from two oil palm wastes. Empty fruit bunch (EFB) and mesocarp fibre (MF) were subjected to pyrolysis at a temperature of 400 °C for 2 hours holding time at 10 °C/min heating rate and with nitrogen flow rate of 2 L/min. The result obtained from raw material showed that MF contains a high quantity of hemicellulose and lignin which led to a high yield of bio-oil and biochar respectively, whereby, EFB contained a high content of cellulose. The high content of cellulose in EFB resulted in a high yield of gas compared to fibre. The higher heating value (HHV) of biochar and bio-oil were found to be 28.76 and 19.45 MJkg-1 for MF and, 24.33 and 19.98 MJkg-1 for EFB, respectively. Comparatively, the biochar obtained from MF material has high HHV than EFB material. However, all the biochars derived can be used for briquettes production as coal replacement in the future due to significantly high calorific value as compared to Malaysian sub-bituminous coal which has 24.6 MJkg-1. Furthermore, pyrolysis of any wastes encourages proper sanitation and lead to a healthy environment. It can also serve as a potential solution to the energy crisis in developing countries, Nigeria in particular if bio-oil can be improved to power electricity generation facilities in replacement to diesel.


2020 ◽  
Vol 7 (2) ◽  
pp. 41 ◽  
Author(s):  
Djomdi ◽  
M. T. Leku ◽  
D. Djoulde ◽  
C. Delattre ◽  
P. Michaud

This article is focused on the production of biodiesel from the waste cotton seed oil (WCSO), after purification, as an alternative to fossil fuels. Waste oil was collected from Sodecoton, a factory producing cotton seed oil in the Far North Cameroon. The WCSO was subjected to purification using activated coal, followed by transesterification under basic conditions (potassium hydroxide (KOH)), using methanol and ethanol. Some physico–chemical properties of biodiesel, such as absorbance of waste and purified oil, density, viscosity, water content, acid value, and its energy content were determined. The result of treating the WCSO with activated coal indicated that purification efficiency of activated coal increased with the contact time and the mass of the absorbent. Absorbance results directly proved that activated coal removed unwanted components. In the same way, activated coal concentration and exposure time influenced the level of free fatty acids of WCSO. The yield of methyl ester was 97%, while that of ethyl ester was 98%. The specific gravity at 25 °C was 0.945 ± 0.0601. An evaluation of the lower calorific value (PCI) was done in order to study the energy content of biodiesel. This was found to be a value of 37.02 ± 3.05 MJ/kg for methyl ester and 36.92 ± 7.20 MJ/kg for ethyl ester. WCSO constitutes feedstock for high volume, good quality, and sustainable production of biodiesel, as well as a realistic means of eliminating the pollution resulting from the indiscriminate disposal of waste oils from both household and industrial users.


2021 ◽  
Vol 10 (3) ◽  
pp. 425-433
Author(s):  
Siti Shawalliah Idris ◽  
Muhammad Izwadi Zailan ◽  
Nabihah Azron ◽  
Norazah Abd Rahman

Turning the food waste into a fuel source such as charcoal briquette was one of the alternatives in managing the food wastes disposal. In this present work, food waste was converted into charcoal by microwave irradiation technique. Application of binders such as potato starch and carboxymethyl cellulose (CMC) at ratios of 5%,10% and 15% for briquetting purpose were investigated in terms of its chemical and physical characteristics. Result showed that the briquette formed using the starch as the binder performed better in combustion quality than that of carboxymethylcellulose (CMC). A good quality of charcoal briquette has capability to withstand impact during packaging, handling, and transportation. Standard physical characteristic that was tested for briquette includes moisture content, compressive strength, and impact resistance. Calorific value of briquette was studied to analyse energy content in the briquette. The study showed that food waste charcoal has calorific value comparable to that of the commercial charcoal. However, the addition of binders showed some reduction in the energy content, with more reduction when CMC is added. In terms of combustion characteristic, the addition of binders does not alter the combustion profile in comparison to the raw food waste charcoal’s profile. The ignition and burnout temperatures of the food waste charcoal briquette showed a better performance with and without binders as compared to the commercial charcoal.  In terms of physical characteristics, CMC has showed as an excellent binder with highest shatter index value. Overall, in terms of chemical properties, addition of 10% starch showed a better performance, while addition of 10% CMC showed a better performance in terms of physical characteristics. This finding is beneficial for briquette industry in the development of green product using biomass, but further research is essential before production of briquette take place.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Venkata Ravi Sankar Cheela ◽  
Michele John ◽  
Brajesh Dubey

AbstractLandfills are urban stocks and resource reservoirs for potential energy recovery. The purpose of this study is to evaluate the amount of energy that could be recovered from aged waste (around 5–20 yr old) recovered from landfills. Investigations were conducted on the physical and chemical properties of refuse-derived fuel (RDF) prepared from recovered landfill waste (RLW) in Andhra Pradesh, India. Waste characterization studies include determination of waste composition, proximity analysis, ultimate analysis, and energy content. The moisture content ranged between 25.7 to 31.3% and no trend was observed with age. In the ultimate analysis, the percentage of carbon increased from 42.9 to 71.7% with the age of the samples, this is due to an increase in the plastic content over time. The calorific value of the recovered landfill waste ranged from 10.4 to 21.8 MJ kg− 1. From the findings, it can be summarized that the RDF can potentially be utilized as a feedstock for the recovery of energy from RLW. The results from this study will assist policy makers and local authorities in designing and developing strategies for resource and energy recovery from landfills in different urban cites across the globe.


2021 ◽  
Author(s):  
V R Sankar Cheela ◽  
Michele John ◽  
Brajesh Dubey

Abstract Landfills are urban stocks and resource reservoirs for potential energy recovery. The purpose of this study is to evaluate the amount of energy that could be recovered from aged waste (around 5-20 yr old) recovered from landfills. Investigations were conducted on the physical and chemical properties of refuse-derived fuel (RDF) prepared from recovered landfill waste (RLW) in Andhra Pradesh, India. Waste characterization studies included determination of waste composition, proximity analysis, ultimate analysis, and energy content. The moisture content ranged between 25.7 to 31.3%, however, no trend was observed with age. In the ultimate analysis, the percentage of carbon increased from 42.9 to 71.7% with the age of the samples, this is due to an increase in the plastic content over time. The calorific value of the recovered landfill waste ranged from 10.4 to 21.8 MJ kg-1. From the findings, it can be summarized that the RDF can potentially be utilized as a feedstock for the recovery of energy from RLW. The results from this study will assist policy makers and local authorities in designing and developing strategies for resource and energy recovery from landfills in different urban cites across the globe.


2020 ◽  
Author(s):  
V R Sankar Cheela ◽  
Michele John ◽  
Brajesh Dubey

Abstract Landfills are urban stocks and resource reservoirs for potential energy recovery. The purpose of this study is to evaluate the amount of energy that could be recovered from aged waste (around 5 - 20 years old) recovered from landfills. Investigations were conducted on the physical and chemical properties of refuse-derived fuel (RDF) prepared from recovered landfill waste (RLW) in Andhra Pradesh, India. Waste characterization studies included determination of waste composition, proximity analysis, ultimate analysis, and energy content. The moisture content ranged between 25.70 to 31.30%, however, no trend was observed with age. In the ultimate analysis, the percentage of carbon increased from 42.94% to 71.66% with the age of the samples, this is due to an increase in the plastic content over time. The calorific value of the recovered landfill waste ranged from 10.35 MJ/kg to 21.83 MJ/kg. From the findings, it can be summarized that the RDF can potentially be utilized as a feedstock for the recovery of energy from RLW. The results from this study will assist policy makers and local authorities in designing and developing strategies for resource and energy recovery from landfills in different urban cites across the globe.


2020 ◽  
Vol 24 (1) ◽  
pp. 25-34
Author(s):  
Józef Gorzelany ◽  
Miłosz Zardzewiały ◽  
Piotr Murawski ◽  
Natalia Matłok

AbstractThe article presents an analysis of the energy, mechanical and chemical properties of pellets made of wood material. According to the manufacturer, wood pellets were made of hard wood shredded to fractions approx. 1 mm thick and up to 3-4 mm long, and of a waste source - sawdust. Measurements of the selected properties were carried out on pellets with a diameter of 6 and 8 mm. Mechanical durability, humidity, crumble rate, ash quantity, calorific value were determined, as well as macronutrient and heavy metals content. The calorific value of pellets, with moisture content from 7.48% to 6.76% and ash content from 0.31% to 0.55%, ranged from 17.71-19.18 MJ·kg−1, which testified to the beneficial energy use of the tested raw material. Based on the conducted research, it was found that the mechanical properties of pellets made of both sawdust and hard wood predispose them for use as boiler fuel. The tested materials met high quality standards for wood pellets used for non-industrial and industrial purposes.


2020 ◽  
Author(s):  
V R Sankar Cheela ◽  
Michele John ◽  
Brajesh Dubey

Abstract Landfills are urban stocks and resource reservoirs for potential energy recovery. The purpose of this study is to evaluate the amount of energy that could be recovered from aged waste (around 5 - 20 years old) recovered from landfills. Investigations were conducted on the physical and chemical properties of refuse-derived fuel (RDF) prepared from recovered landfill waste (RLW) in Andhra Pradesh, India. Waste characterization studies included determination of waste composition, proximity analysis, ultimate analysis, and energy content. The moisture content ranged between 25.70 to 31.30%, however, no trend was observed with age. In the ultimate analysis, the percentage of carbon increased from 42.94% to 71. 66% with the age of the samples, this is due to an increase in the plastic content over time. The calorific value of the recovered landfill waste ranged from 10.35 MJ/kg to 21.83 MJ/kg. From the findings, it can be summarized that the RDF can potentially be utilized as a feedstock for the recovery of energy from RLW. The results from this study will assist policy makers and local authorities in designing and developing strategies for resource and energy recovery from landfills in different urban cites across the globe.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 851
Author(s):  
Marek Bury ◽  
Ewa Możdżer ◽  
Teodor Kitczak ◽  
Hanna Siwek ◽  
Małgorzata Włodarczyk

Silphium perfoliatum L. (Silphium) is one of the most promising perennial herbaceous plants, mainly due to its high biomass yield and multiple uses. It can be grown as a fodder, ornamentally, for energy (mainly as a biogas source), and as a honey crop (source of nectar and pollen for pollinators). Despite the considerable qualities of this crop, the Silphium cultivation area in Europe is small. The main limiting factors are the significant costs of plantation establishment and the lack of biomass yield in the first year of cultivation. Considering these aspects, research was undertaken at the Agricultural Experimental Station Lipnik of West Pomeranian University of Technology Szczecin, to assess two methods of establishing a plantation: generative, by sowing seeds (seeds); and vegetative, by transplanting seedlings grown from seeds (planting), on the yield and quality of Silphium biomass attended for combustion and its heating value and chemical composition. In 2016–2019, annual aboveground biomass was harvested after the end of vegetation to obtain the raw material for combustion. The collected dry mass yield (DMY) of Silphium significantly differed between the years and methods of establishing the plantation. The biomass yields increased in the first two years of full vegetation from 9.3 to 18.1 Mg∙ha−1·yr−1, and then decreased in the third year of vegetation to ca. 13 Mg∙ha−1·yr−1 because of drought. Significantly higher DMY was obtained by sowing seeds (ca. 13.9 Mg∙ha−1·yr−1) compared to the planting method (ca. 13.0 Mg∙ha−1·yr−1), due to the higher plant density obtained after the sowing method compared to the planting method. The calorific value in the third year was the highest and amounted to ca. 17.8 MJ·kg−1 DM. The paper also presents changes in soil chemical properties before and after four years of Silphium cultivation.


Sign in / Sign up

Export Citation Format

Share Document