scholarly journals Immunomodulatory Effects of Human Cryopreserved Viable Amniotic Membrane in a Pro-Inflammatory Environment In Vitro

2017 ◽  
Vol 10 (5) ◽  
pp. 451-462 ◽  
Author(s):  
Claire E. Witherel ◽  
Tony Yu ◽  
Mark Concannon ◽  
Will Dampier ◽  
Kara L. Spiller
Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 716
Author(s):  
Daniele Castiglia ◽  
Paola Fortugno ◽  
Angelo Giuseppe Condorelli ◽  
Sabina Barresi ◽  
Naomi De Luca ◽  
...  

Junctional epidermolysis bullosa (JEB) is a clinically and genetically heterogeneous skin fragility disorder frequently caused by mutations in genes encoding the epithelial laminin isoform, laminin-332. JEB patients also present mucosal involvement, including painful corneal lesions. Recurrent corneal abrasions may lead to corneal opacities and visual impairment. Current treatments are merely supportive. We report a novel JEB phenotype distinguished by the complete resolution of skin fragility in infancy and persistent ocular involvement with unremitting and painful corneal abrasions. Biallelic LAMB3 mutations c.3052-5C>G and c.3492_3493delCG were identified as the molecular basis for this phenotype, with one mutation being a hypomorphic splice variant that allows residual wild-type laminin-332 production. The reduced laminin-332 level was associated with impaired keratinocyte adhesion. Then, we also investigated the therapeutic power of a human amniotic membrane (AM) eyedrop preparation for corneal lesions. AM were isolated from placenta donors, according to a procedure preserving the AM biological characteristics as a tissue, and confirmed to contain laminin-332. We found that AM eyedrop preparation could restore keratinocyte adhesion in an in vitro assay. Of note, AM eyedrop administration to the patient resulted in long-lasting remission of her ocular manifestations. Our findings suggest that AM eyedrops could represent an effective, non-invasive, simple-to-handle treatment for corneal lesions in patients with JEB and possibly other EB forms.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1269
Author(s):  
Razan J. Masad ◽  
Shoja M. Haneefa ◽  
Yassir A. Mohamed ◽  
Ashraf Al-Sbiei ◽  
Ghada Bashir ◽  
...  

Honey has exerted a high impact in the field of alternative medicine over many centuries. In addition to its wound healing, anti-microbial and antioxidant properties, several lines of evidence have highlighted the efficiency of honey and associated bioactive constituents as anti-tumor agents against a range of cancer types. Mechanistically, honey was shown to inhibit cancer cell growth through its pro-apoptotic, anti-proliferative and anti-metastatic effects. However, the potential of honey to regulate anti-tumor immune responses is relatively unexplored. A small number of in vitro and in vivo studies have demonstrated the ability of honey to modulate the immune system by inducing immunostimulatory as well as anti-inflammatory effects. In the present review, we summarize the findings from different studies that aimed to investigate the immunomodulatory properties of honey and its flavonoid components in relation to cancer. While these studies provide promising data, additional research is needed to further elucidate the immunomodulatory properties of honey, and to enable its utilization as an adjuvant therapy in cancer.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana Colado ◽  
Esteban Enrique Elías ◽  
Valeria Judith Sarapura Martínez ◽  
Gregorio Cordini ◽  
Pablo Morande ◽  
...  

AbstractHypogammaglobulinemia is the most frequently observed immune defect in chronic lymphocytic leukemia (CLL). Although CLL patients usually have low serum levels of all isotypes (IgG, IgM and IgA), standard immunoglobulin (Ig) preparations for replacement therapy administrated to these patients contain more than 95% of IgG. Pentaglobin is an Ig preparation of intravenous application (IVIg) enriched with IgM and IgA (IVIgGMA), with the potential benefit to restore the Ig levels of all isotypes. Because IVIg preparations at high doses have well-documented anti-inflammatory and immunomodulatory effects, we aimed to evaluate the capacity of Pentaglobin and a standard IVIg preparation to affect leukemic and T cells from CLL patients. In contrast to standard IVIg, we found that IVIgGMA did not modify T cell activation and had a lower inhibitory effect on T cell proliferation. Regarding the activation of leukemic B cells through BCR, it was similarly reduced by both IVIgGMA and IVIgG. None of these IVIg preparations modified spontaneous apoptosis of T or leukemic B cells. However, the addition of IVIgGMA on in vitro cultures decreased the apoptosis of T cells induced by the BCL-2 inhibitor, venetoclax. Importantly, IVIgGMA did not impair venetoclax-induced apoptosis of leukemic B cells. Overall, our results add new data on the effects of different preparations of IVIg in CLL, and show that the IgM/IgA enriched preparation not only affects relevant mechanisms involved in CLL pathogenesis but also has a particular profile of immunomodulatory effects on T cells that deserves further investigation.


2006 ◽  
Vol 82 (2) ◽  
pp. 282-292 ◽  
Author(s):  
Wei Li ◽  
Hua He ◽  
Tetsuya Kawakita ◽  
Edgar M. Espana ◽  
Scheffer C.G. Tseng

2011 ◽  
Vol 22 (1) ◽  
pp. 29-39 ◽  
Author(s):  
Gholamreza Nikbakht-Brujeni ◽  
Hassan Tajbakhsh ◽  
Mehrdad Pooyanmehr ◽  
Isaac Karimi

2018 ◽  
Vol 24 (2) ◽  
pp. 267-275 ◽  
Author(s):  
Elena Marinelli Busilacchi ◽  
Andrea Costantini ◽  
Nadia Viola ◽  
Benedetta Costantini ◽  
Jacopo Olivieri ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3101
Author(s):  
Cuiping Zhang ◽  
Mina Delawary ◽  
Peng Huang ◽  
Jennifer A. Korchak ◽  
Koji Suda ◽  
...  

Mesenchymal stem cells (MSCs) are used in various studies to induce immunomodulatory effects in clinical conditions associated with immune dysregulation such as graft versus host disease (GvHD). However, most of these clinical trials failed to go beyond early phase 2 studies because of limited efficacy. Various methods have been assessed to increase the potency of MSCs. IL-10 is an anti-inflammatory cytokine that is known to modulate immune responses in GvHD. In this study, we evaluated the feasibility of transfecting IL-10 mRNA to enhance MSC therapeutic potential. IL-10 mRNA engineered MSCs (eMSCs-IL10) maintained high levels of IL-10 expression even after freezing and thawing. IL-10 mRNA transfection did not appear to alter MSC intrinsic characteristics. eMSCs-IL10 significantly suppressed T cell proliferation relative to naïve MSCs in vitro. In a mouse model for GvHD, eMSCs-IL10 induced a decrease in plasma level of potent pro-inflammatory cytokines and inhibited CD4+ and CD8+ T cell proliferation in the spleen. In summary, our studies demonstrate the feasibility of potentiating MSCs to enhance their immunomodulatory effects by IL-10 mRNA transfection. The use of non-viral transfection may generate a safe and potent MSC product for treatment of clinical conditions associated with immune dysregulation such as GvHD.


Sign in / Sign up

Export Citation Format

Share Document