Utilization of marble dust, fly ash and waste sand (Silt-Quartz) in road subbase filling materials

2012 ◽  
Vol 16 (7) ◽  
pp. 1143-1151 ◽  
Author(s):  
S. Fırat ◽  
G. Yılmaz ◽  
A. T. Cömert ◽  
M. Sümer
Author(s):  
Zaryab Ahmed Rid ◽  
Syed Naveed Raza Shah ◽  
Muhammad Jaffar Memon ◽  
Ashfaque Ahmed Jhatial ◽  
Manthar Ali Keerio ◽  
...  

2017 ◽  
Vol 12 (2) ◽  
pp. 106-116 ◽  
Author(s):  
Rajan Choudhary ◽  
Dibyatonu Chattopadhyay ◽  
Abhinay Kumar ◽  
Ashok Julaganti

For a fast developing economy like India, expansion, rehabilitation, and maintenance of transportation infrastructure is crucial and require huge quantities of high quality natural aggregates. Meanwhile, vast amounts of industrial wastes accumulating in the country pose problems related to safe and sustainable disposal. The present study investigated possible utilisation of marble dust, a waste from stone industry, and fly ash, a waste from thermal power stations, as filler materials in open-graded friction course mixes. Open-graded friction course mixes incorporating fly ash, marble dust, and two sources of stone dust as filler fractions were designed and evaluated for mix design properties including draindown, abrasion loss, air void content, and permeability. Morphology of each filler was characterised through scanning electron microscopy. Physicochemical properties of fillers were examined through Rigden voids, German filler test, methylene blue, and hydrometer analysis. Analysis of variance using Fisher multiple comparison procedure was performed to evaluate the effect of filler type on design properties of open-graded friction course mixes. Regression analysis using forward selection technique was performed to identify significant filler characteristics influencing open-graded friction course properties. Results showed that filler type affected open-graded friction course design parameters significantly. Open-graded friction course mixes with marble dust showed promising performance with lowest draindown, and highest durability, air voids, and permeability. Regression analysis identified Rigden void content of filler materials as a major filler characteristic affecting the mix design parameters of open-graded friction course mixes.


Minerals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 116 ◽  
Author(s):  
Nan Zhou ◽  
Haobin Ma ◽  
Shenyang Ouyang ◽  
Deon Germain ◽  
Tao Hou

Given that normal filling technology generally cannot be used for mining in the western part of China, as it has only a few sources for filling gangue, the feasibility of instead using cemented filling materials with aeolian sand as the aggregate is discussed in this study. We used laboratory tests to study how the fly ash (FA) content, cement content, lime–slag (LS) content, and concentration influence the transportation and mechanical properties of aeolian-sand-based cemented filling material. The internal microstructures and distributions of the elements in filled objects for curing times of 3 and 7 days are analyzed using scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The experimental results show that: (i) the bleeding rate and slump of the filling-material slurry decrease gradually as the fly ash content, cement content, lime–slag content, and concentration increase, (ii) while the mechanical properties of the filled object increase. The optimal proportions for the aeolian sand-based cemented filling material include a concentration of 76%, a fly ash content of 47.5%, a cement content of 12.5%, a lime–slag content of 5%, and an aeolian sand content of 35%. The SEM observations show that the needle/rod-like ettringite (AFt) and amorphous and flocculent tobermorite (C-S-H) gel are the main early hydration products of a filled object with the above specific proportions. After increasing the curing time from 3 to 7 days, the AFt content decreases gradually, while the C-S-H content and the compactness increase.


Author(s):  
Swati Gangwar ◽  
Vimal Kumar Pathak

Industrial wastes such as marble dust, fly ash, and red mud have progressed as an environmental hazard that needs to be disposed or utilized for minimizing the ecological pollution problems and manufacturing costs. Over the years, there is an increasing interest among researchers in utilizing these industrial wastes as reinforcement for developing economic and lightweight monolithic or hybrid composites. In the same context, this paper presents a comprehensive review on the aspects of tribology and thermal performance of industrial waste such as marble dust, fly ash, and red mud as reinforcement for different monolithic and hybrid composites. The review also describes different applications for industrial waste material reinforced composites. Finally, the paper concludes with authors’ perspective of the review, conclusion summary, and future potential of industrial waste filled composites in different industries for obtaining a sustainable and cleaner environment.


2014 ◽  
Vol 21 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Ismail Zorluer ◽  
Suleyman Gucek

AbstractThe use of waste materials as an additive in soil stabilization has been widespread. This is important in terms of recycling of waste materials and reducing environmental pollution. The objective of this study is to investigate the beneficial reuse of marble dust and fly ash in soil stabilization. Tests were performed on clay soil mixtures amended with marble dust and fly ash. Marble dust was used as an activator due to fly ash being inadequate for self-cementing. Unconfined compressive strength (qu), freeze-thaw, swelling, and California bearing ratio (CBR) tests were conducted to investigate the effect of marble dust and fly ash, curing time, and molding water content on geotechnical parameters. Addition of marble dust and fly ash increased unconfined compressive strength, CBR, and freeze-thaw strength, but these additives decreased swelling potential and grain loss after freeze-thaw. Increasing the curing time results in increased strength of mixtures and decreased grain loss. As a result, this study shows that the geotechnical properties of clay soil are improved with the addition of marble dust and fly ash. This is an economical and environmentally friendly solution.


2020 ◽  
Vol 322 ◽  
pp. 01033
Author(s):  
An Cheng ◽  
Wei-Ting Lin ◽  
Sao-Jeng Chao ◽  
Hui-Mi Hsu

Conventional cementitious materials as tunnel supporting materials are utilised in the construction of the final repository for spent nuclear fuel. However, the use of cementitious material releases alkaline ions from pH12 to pH13 plumed into groundwater. Such a high pH is detrimental to the performance of the bentonite functioning, which may possibly enhance the dissolution and alteration of the fracture buffer and filling materials. Instead, low-pH cementitious materials are being developed for use in geological repositories. This study is aimed at evaluating the usability of low-pH cementitious materials containing 40% silica fume or composites blended with 20% silica fume and 40% fly ash. Engineering properties were analysed and verified through experimental research using the flow, compressive strength, pH measurement and hydraulic conductivity. Test results show that the replacement level with 40% of silica fume or 20% of silica fume and 40% of fly ash was suitable for the mixture of low-pH cementitious. Compared to the compressive strength and water permeability of ordinary cementitious, those of low-pH cementitious enhanced better engineered performances at the age of 91 days. The information is contributed us to establish the long-term durability and environmental requirements of disposal repositories in Taiwan.


2019 ◽  
Vol 8 (2S3) ◽  
pp. 1137-1139

Construction sector which uses cement in its activities causing a release of CO2 into the atmosphere. Currently, all the sectors are viewing seriously in reducing environmental pollution and hazards. In this scenario, the research in industrial wastes such as fly ash, slag, used foundry sand, marble dust, etc., lead to use in construction industries as sustainable materials (SM), thereby contributing to reduction in environmental pollution. This paper reviewed the usage of these SM in the production of micro-concrete is very less when compared with new age conventional concrete, some of the effects of utilization of these SM in micro-concrete are presented. The quantum of research done in micro-concrete is very less, further studies to be done


2019 ◽  
Vol 8 (2) ◽  
pp. 5676-5681 ◽  

Traditional testing methods such as absorption test and permeability test are normally not providing accurate results of nature of concrete and there is a need for another type of test to predict the durability of concrete. In this work, industrial by-product like dolomite, marble dust and fly ash are utilized as fraction of cement replacing with 2%, 4%, 6%, 8%, and 10% dolomite, 10% fly ash and 10% marble dust by the weight of cement. The study is conducted on mix designed concrete of M30 grade and compared with conventional concrete. The specimens are casted and tested to examine various properties of concrete like compressive strength, split tensile strength, durability and sorptivity. Durability test is done by hydrochloric acid (HCl) and sulphuric acid (H2SO4 ) on dolomite powder, promising results were obtained in the sorptivity test which shows the dense nature of concrete by the usage of dolomite powder.


Sign in / Sign up

Export Citation Format

Share Document