scholarly journals A non-stationary relay-based 3D MIMO channel model with time-variant path gains for human activity recognition in indoor environments

Author(s):  
Rym Hicheri ◽  
Ahmed Abdelgawwad ◽  
Mathias Pätzold

AbstractExtensive research showed that the physiological response of human tissue to exposure to low-frequency electromagnetic fields is the induction of an electric current in the body segments. As a result, each segment of the human body behaves as a relay, which retransmits the radio-frequency (RF) signal. To investigate the impact of this phenomenon on the Doppler characteristics of the received RF signal, we introduce a new three-dimensional (3D) non-stationary channel model to describe the propagation phenomenon taking place in an indoor environment. Here, the indoor space is equipped with a multiple-input multiple-output (MIMO) system. A single person is moving in the indoor space and is modelled by a cluster of synchronized moving point scatterers, which behave as relays. We derive the time-variant (TV) channel transfer function (CTF) with TV path gains and TV path delays. The expression of the TV path gains is obtained from the instantaneous total received power at the receiver side. This TV total received power is expressed as the product of the TV power of the RF signal initially transmitted and received by a body segment and the TV received power of the redirected signal. These TV powers are determined according the free-space path-loss model. Also, a closed-form approximate solution to the spectrogram of the TVCTF is derived. Here, we analyse the effect of the motion of the person and the validity of the relay assumption on the spectrogram, the TV mean Doppler shift (MDS), and the TV Doppler shift (DS) of the TVCTF. Simulation results are presented to illustrate the proposed channel model.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Kai Zhang ◽  
Fangqi Zhang ◽  
Guoxin Zheng ◽  
Lei Cang

With the rapid development of high-mobility wireless communication systems, e.g., high-speed train (HST) and metro wireless communication systems, more and more attention has been paid to the wireless communication technology in tunnel-like scenarios. In this paper, we propose a three-dimensional (3D) nonstationary multiple-input multiple-output (MIMO) channel model with high-mobility wireless communication systems using leaky coaxial cable (LCX) inside a rectangular tunnel over the 1.8 GHz band. Taking into account single-bounce scattering under line-of-sight (LoS) and non-line-of-sight (NLoS) propagations condition, the analytical expressions of the channel impulse response (CIR) and temporal correlation function (T-CF) are derived. In the proposed channel model, it is assumed that a large number of scatterers are randomly distributed on the sidewall of the tunnel and the roof of the tunnel. We analyze the impact of various model parameters, including LCX spacing, time separation, movement velocity of Rx, and K-factor, on the T-CF of the MIMO channel model. For HST, the results of some further studies on the maximum speed of 360 km/h are given. By comparing the T-CF between the dipole MIMO system and the LCX-MIMO system, we can see that the performance of the LCX-MIMO system is better than that of the dipole MIMO system.


2012 ◽  
Vol 263-266 ◽  
pp. 1178-1183 ◽  
Author(s):  
Wei Gang Bai ◽  
Hai Yan Wang ◽  
Rui Qin Zhao

Underwater acoustic networks (UWAN) play a crucial role in the development of modern marine military defense and civilian marine. In many cases, the simulation of routing and MAC protocols in underwater acoustic network has ignored the impact of some critical features of complex underwater acoustic channel upon UWAN performances. This paper establishes a channel model for the Rayleigh fading channel in shallow-water medium-range communication in OPNET network simulation software. It simulates the time-varying and multi-path effects of underwater acoustic channel, which are reflected in the received power and bit error rate. Finally the validity of this channel model is verified by simulations.


This paper current limit and execution of different reception apparatuses for remote correspondence frameworks. Numerous radio wires structures are classified into single-input various yields (SIMO), different sources of info single yield (MISO), and numerous data sources numerous yields (MIMO) frameworks. Expecting that the channel is obscure at beneficiary, articulations for the limit are given for each structure. The impact of utilize dissimilar reaction apparatuses on the limit of remote correspondence frameworks by utilizing Matlab code. Our outcomes demonstrate that expanding the quantity of transmitting and accepting radio wires for a remote MIMO channel improves the channel limit that can be acquired. Since mixed media application requires higher information rate which can be conceivable by MIMO (8x8) framework, in this paper Channel limit of the (8x8) MIMO is evaluated and contrasted and channel known and obscure. It has been demonstrated the reliance of MIMO channel limit on channel information. Future remote correspondence frameworks play out a leap forward in framework execution, by utilizing radio wire clusters at the two sides of correspondence connect.


Author(s):  
Qi Hong ◽  
Jiliang Zhang ◽  
Hui Zheng ◽  
Hao Li ◽  
Haonan Hu ◽  
...  

Three dimension (3D) Multi-input-multi-output (MIMO) scheme, which exploits another dimension of the spatial resource, is one of the enabling technologies for the next generation mobile communication. As the elevation angle in 3D-MIMO channel model might varies against the height of the base station transmit antenna, it has to be taken into account carefully. In this paper, the impact of antenna height on the channel characteristics of 3D MIMO channel is investigated by using the intelligent ray launching algorithm (IRLA). Three typical street scenarios, i.e., the straight street, the fork road and the cross road, are selected as benchmarks. On the basis of simulations, joint and marginal probability density functions (PDFs) of both the elevation angle of departure (EAoD) and the elevation angle of arrival (EAoA) are obtained. The elevation angle spread (AS) and the delay spread (DS) under various antenna heights are also discussed. Simulation results indicate that the PDFs of EAoD and EAoA vary characteristics under different street scenarios. Moreover, the minimum value of the DS can be achieved when the antenna height is half of the building height.


Author(s):  
Jianzheng Li ◽  
Fei Li ◽  
Wei Ji ◽  
Yulong Zou ◽  
Chunguo Li

In this paper a three-dimension (3D) multiple-input multiple-output (MIMO) channel model is derived by considering the elevation dimension and the azimuth dimension together. To get a more accurate performance analysis for 3D MIMO channel, both Tx and Rx correlation matrices are derived, respectively, in closed form, which consist of 3D Kronecker channel model. This novel 3D Kronecker channel model is developed for arbitrary antenna arrays with non-isotropic antenna patterns and also for any propagation environment of 3D MIMO systems. In order to quantify the performance of 3D MIMO systems, the capacity in multi-user cases is analyzed. Simulation results validate the proposed 3D Kronecker channel model and study the impact of elevation and azimuth angular spread and that of Rx antenna element spacing on the correlation. The proposed capacity analysis in multi-user cases for 3D MIMO systems is also verified by simulation.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Hsun-Chang Lo ◽  
Ding-Bing Lin ◽  
Teng-Chieh Yang ◽  
Hsueh-Jyh Li

We describe a simple multiple-input/multiple-output (MIMO) channel measurement system for acquiring indoor MIMO channel responses. Four configurations of the polarization diversity antenna, referred to asVVV,YYH,YVYandVHH, were studied in terms of the capacity of indoor MIMO systems. Measurements were taken for a3×3MIMO system in the 2.4 GHz band. In addition, the channel capacity, singular-value decomposition, and correlation coefficient were used to explain the effects of various polarization schemes on MIMO fading channels. We also propose an analysis method for polarization channel capacity; this method includes the normalization of the received power and polarization effect for different polarization schemes. The validation of the model is based upon data collected in both light-of-sight (LOS) and non-light-of-sight (NLOS) environments. From the numerical simulation results, the proposed analysis method was close to measurements made in an indoor environment.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Bingyan He ◽  
Tao Sun ◽  
Chuanmu Li ◽  
Xingwang Huang

In this paper, for strengthening the security of wireless transmission system, the time reversal (TR) beamforming method is proposed for the downlink of multi-user MIMO system with multiple users who potentially act as eavesdroppers. We develop a multi-input, single-output, multi-eavesdropper (MISOME) wiretap channel model in which Rayleigh fading and spatial correlation are taken into account. Using the proposed model, we further analyze the confidentiality provided by TR beamforming and we use achievable secrecy rates as our performance metrics. In particular, we derive novel closed-formed expressions for the average secrecy-SINR and the mean secrecy sum-rate in order to characterize the influences of propagation conditions on network secrecy metrics. These expressions provide deeper insights into the impact of network interference on communication confidentiality. We find that TR beamforming can deliver the maximum secrecy capacity potential in uncorrelated Rayleigh channels and achieve perfect confidential communication without any extra secrecy cost. On the other hand, even weak inter-user correlation may cause a significant loss of achievable secrecy sum-rate and therefore result in high secrecy cost. But benefiting more from larger signal bandwidth and rich-scattering environment, the TR beamforming technique is still an attractive and cost-effective solution for low-power indoor applications.


2021 ◽  
Author(s):  
Hugo Sanchez Quispe ◽  
Pablo Palacios Játiva ◽  
Freddy Ajila Zaquinaula ◽  
Santiago Logroño Naranjo ◽  
Hilter Figueroa Saavedra ◽  
...  

Abstract Currently, agriculture based on agronomic greenhouses is replacing traditional agriculture. This technique reduces dependence on rain on crops. It also generates a controlled internal environment making optimal use of land and water resources. However, this environment needs more care and attention compared to traditional agriculture. To overcome this limitation, various radio frequency (RF)-based technologies can be used. Nevertheless, studies show that the use of communications in RF bands degrades crops' growth and quality. Therefore, an efficient solution is to use the visible light spectrum for communication, the main technology of which is called visible light communication (VLC). Despite numerous studies for the application of VLC in indoor environments, specific VLC systems for agronomic greenhouse environments or their channel models are not yet investigated in depth. To collaborate on state of art on this topic, we present in this paper a novel channel model that incorporates specific factors that affect the quality of VLC systems in agronomic greenhouse environments. Factors such as the random position and orientation of the transmitters and external environmental agents such as atmospheric and different noise types are considered. These components are integrated into an analytical framework by developing the mathematical model of the VLC channel. Furthermore, the analytical expressions of the received power, the signal-to-noise-ratio (SNR), and the bit error rate (BER) are obtained. A VLC system applied to an agronomic greenhouse scenario is developed through computer simulations to validate the mathematical analysis. The results show that illuminance is adequate for the efficient operation of the greenhouse. Besides, the influence of atmospheric factors and noises on the magnitude and temporal dispersion of the channel impulse response is verified. Finally, the results show the system's performance in terms of SNR and BER, observing their differences compared to a traditional indoor VLC system.


2022 ◽  
Vol 6 (1) ◽  
pp. 29-42
Author(s):  
Latih Saba'neh ◽  
◽  
Obada Al-Khatib ◽  

<abstract><p>Millimetre wave (mm-wave) spectrum (30-300GHz) is a key enabling technology in the advent of 5G. However, an accurate model for the mm-wave channel is yet to be developed as the existing 4G-LTE channel models (frequency below 6 GHz) exhibit different propagation attributes. In this paper, a spatial statistical channel model (SSCM) is considered that estimates the characteristics of the channel in the 28, 60, and 73 GHz bands. The SSCM is used to mathematically approximate the propagation path loss in different environments, namely, Urban-Macro, Urban-Micro, and Rural-Macro, under Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) conditions. The New York University (NYU) channel simulator is utilised to evaluate the channel model under various conditions including atmospheric effects, distance, and frequency. Moreover, a MIMO system has been evaluated under mm-wave propagation. The main results show that the 60 GHz band has the highest attenuation compared to the 28 and 73 GHz bands. The results also show that increasing the number of antennas is proportional to the condition number and the rank of the MIMO channel matrix.</p></abstract>


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Shirook M. Ali ◽  
Amin Mobasher ◽  
Paul Lusina

We investigate in this paper the effects of the user's presence on the performance of a multiple-input multiple-output (MIMO) system in data and in voice usage scenarios. The investigation studies the user effects on the antenna performance and how these are incorporated into the MIMO channel and the link characteristics. The antennas and the user are deterministic. These are then integrated into the statistical 3GPP spatial channel model (SCM) for a typical macrocell propagation environment setting. The channel performance is analyzed based on the average channel capacity, the average power transfer, the correlation, and the cumulative distribution function of the channel capacity as well as the link throughout and the error performance. The mentioned channel and link properties are tied to the MIMO antenna properties that are represented in the mutual coupling between the antennas, the power loss, the total radiated power, the mean effective gain (MEG), as well as the efficiency with emphasis on how the user affects each. It was found that the presence of the user contributed to a loss of up to 50% in the average channel power transfer. The data position was found to be the lowest in terms of channel capacity performance. The voice position performance showed a large dependence on the user orientation with respect to the line of sight path while the data position showed less dependence on the user's orientation. We also discuss through the examined antenna and channel properties the importance of the channel multipath on the MIMO performance. In some scenarios, it was found that a well-conditioned channel can compensate for losses due to the presence of the user, improving the overall system performance. The presented investigation at the link level also discusses the user effects in different MIMO transmission schemes.


Sign in / Sign up

Export Citation Format

Share Document