Quality Deviation Handling on the Polymeric Coating of Pharmaceutical Tablets

2018 ◽  
Vol 14 (4) ◽  
pp. 332-340
Author(s):  
Erica Costa Fernandes ◽  
Nathalia Rondolfo ◽  
Viviane Beraldo-de-Araújo ◽  
Laura Oliveira-Nascimento
2018 ◽  
Vol 6 (87) ◽  
pp. 19-27 ◽  
Author(s):  
V. M. Oskolkov ◽  
T. O. Petrova ◽  
I. A. Varfolomeyev ◽  
L. N. Vinogradova ◽  
E. V. Ershov

Author(s):  
Muna I Khalaf ◽  
Khulood A Saleh ◽  
Khalil S Khalil

Electro polymerization of N-benzothiazolyl maleamic acid (NBM) was carried out on stainless steel plate electrode in a protic medium of monomer aqueous solution using electrochemical oxidation procedure in electrochemical cell.Spectroscopic characterization techniques were investigated to obtain information about the chemical structure of polymer. The anti-corrosion action of polymer was investigated on stainless steel by electrochemical polarization method. In addition, the effect of adding nanomaterial (TiO2, ZnO (bulk-nano)) to monomer solution on the corrosion behavior of stainless steel was investigated. The results obtained showed that the corrosion rate of S-steel increased with temperature increase from 293K to 323K and the values of inhibition efficiency by coating polymer increase with nanomaterial addition. Apparent energies of activation have been calculated for the corrosion process of S-steel in acidic medium before and after polymeric coating. Furthermore were studied the effect of the preparing polymer on some strain of bacteria.


2019 ◽  
Author(s):  
Maria Teresa Odinolfi ◽  
Alessandro Romanato ◽  
Greta Bergamaschi ◽  
Alessandro Strada ◽  
Laura Sola ◽  
...  

The use of peptides in paper-based analytics is a highly appealing field, yet it suffers from severe limitations. This is mostly due to the loss of effective target recognition properties of this relatively small bioprobes upon nonspecific adsorption onto cellulose substrates. Here, we address this issue by introducing a simple polymer-based strategy to obtain clickable cellulosic surfaces, that we exploited for the chemoselective bioconjugation of peptide bioprobes. Our method largely outperformed standard adsorption-based immobilization strategy in a challenging, real-case immunoassay, namely the diagnostic discrimination of Zika+ individuals from healthy controls. Of note, the clickable polymeric coating not only allows efficient peptides bioconjugation, but it provides favorable anti-fouling properties to the cellulosic support. We envisage our strategy to broaden the repertoire of cellulosic materials manipulation and promote a renewed interest in peptide-based paper bioassays.


2019 ◽  
Author(s):  
Maria Teresa Odinolfi ◽  
Alessandro Romanato ◽  
Greta Bergamaschi ◽  
Alessandro Strada ◽  
Laura Sola ◽  
...  

The use of peptides in paper-based analytics is a highly appealing field, yet it suffers from severe limitations. This is mostly due to the loss of effective target recognition properties of this relatively small bioprobes upon nonspecific adsorption onto cellulose substrates. Here, we address this issue by introducing a simple polymer-based strategy to obtain clickable cellulosic surfaces, that we exploited for the chemoselective bioconjugation of peptide bioprobes. Our method largely outperformed standard adsorption-based immobilization strategy in a challenging, real-case immunoassay, namely the diagnostic discrimination of Zika+ individuals from healthy controls. Of note, the clickable polymeric coating not only allows efficient peptides bioconjugation, but it provides favorable anti-fouling properties to the cellulosic support. We envisage our strategy to broaden the repertoire of cellulosic materials manipulation and promote a renewed interest in peptide-based paper bioassays.


Author(s):  
Pratik Chhapia ◽  
Harshad Patel

: Graphene based co-polymeric Nano-composites explored and trending in various applications as ascribing to its enhanced conductivity and controlled modification with wide specific surface areas. With the number of advantages of co-polymeric coating on Graphene or Graphene sheets and their derivatives, Graphene based co-polymeric Nano-composites fabricated by various techniques (deposition, ink jet, electro spinning, spin coating, in-situ techniques, etc.) and different conducting co-polymers show its exceptional chemical, mechanical, electrical and optical properties. Therefore, in the today’s world with greater quantities of various properties of co-polymer with Graphene based Nano-composites with enhanced stability, selectivity and sensitivity have been formed. In this review paper, we have particularly focused on recent advancing in fabrication of different technologies with the help of Graphene based co-polymeric Nano-composites and its various trending and future applications. Finally, on the personal standpoint; the key challenges of Graphene based co-polymeric Nano-composites are mentioned in hope to shed a light on their potential future prospects.


Author(s):  
F. Olmo ◽  
A. Rodriguez ◽  
A. Colina ◽  
A. Heras

AbstractUV/Vis absorption spectroelectrochemistry is a very promising analytical technique due to the complementary information that is simultaneously obtained from electrochemistry and spectroscopy. In this work, this technique is used in a parallel configuration to study the oxidation of folic acid in alkaline medium. Herein, UV/Vis absorption spectroelectrochemistry has been used to detect both the oxidation products and the folic acid consumed at the electrode/solution interface, allowing us to develop an analytical protocol to quantify vitamin B9 in pharmaceutical tablets. Linear ranges of three orders of magnitude have been achieved in basic medium (pH = 12.9), obtaining high repeatability and low detection limits. The spectroelectrochemical determination of folic acid in pharmaceutical tablets at alkaline pH values is particularly interesting because of the changes that occur in the optical signal during the electrochemical oxidation of FA, providing results with very good figures of merit and demonstrating the utility and versatility of this hyphenated technique, UV/Vis absorption spectroelectrochemistry.


2012 ◽  
Vol 2 (2) ◽  
pp. 90-97 ◽  
Author(s):  
Anna Palou ◽  
Jordi Cruz ◽  
Marcelo Blanco ◽  
Jaume Tomàs ◽  
Joaquín de los Ríos ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Lin Jin ◽  
Xiaoqing Guo ◽  
Di Gao ◽  
Cui Wu ◽  
Bin Hu ◽  
...  

AbstractEffectively achieving wound healing is a great challenge. Herein, we facilely prepared temperature-responsive MXene nanobelt fibers (T-RMFs) carrying vitamin E with a controllable release ability for wound healing. These T-RMFs were composed of MXene nanosheets spread along polyacrylonitrile and polyvinylpyrrolidone composite nanobelts together with a thermosensitive PAAV- coating layer. The high mass loading and high surface area of the MXene nanosheets endow the T-RMFs with excellent photothermal properties. The temperature could be easily controlled by near-infrared (NIR) irradiation exposure, and then the thermoresponsive polymeric coating layer relaxed the interface to dissolve vitamin E and promote vitamin E release. The T-RMFs demonstrated excellent biocompatibility and wound-healing functions in cellular and animal tests. The facile method, high mass loading, high surface area, excellent wound-healing functions, interesting nanosheet/nanobelt structure, mass production potential, and NIR responsive properties of these T-RMFs indicate the great potential of our nanobelts for wound healing, tissue engineering, and much broader application areas. This facile nanosheet/nanobelt preparation strategy paves a new way for nanomaterial fabrication and applications.


2021 ◽  
Vol 32 (2) ◽  
pp. 115-129
Author(s):  
Emi Horiguchi-Babamoto ◽  
Makoto Otsuka

BACKGROUND: Warfarin potassium (Wf) commercial tablets originally formulated for adults are ground before administration to pediatric patients and elderly patients with dysphagia. OBJECTIVE: The present study investigated the effect of tablet grinding on the photostability of four types of commercial Wf tablets and predicted the photostability of the tablet powders by chemometric analysis. METHODS: The photodegradation of Wf content was evaluated by reversed-phase column high-performance liquid chromatography with ultraviolet (HPLC-UV). RESULTS: The bulk Wf powder was relatively photostable, whereas ground Wf tablets underwent substantial photodegradation. The photostability of the ground powders of a brand-name Wf commercial tablet and three generic Wf commercial tablets was quantitatively assessed and compared. In certain cases, the Wf in all the three ground generic tablets was less photostable than in the ground brand-name tablets. After 28 days of light irradiation, the Wf content decreased to 69.79% in the brand-name tablets, while it was 31.90% in some generic tablets. To clarify the factors influencing the relative photostability in various Wf formulations, we analyzed the intermolecular interactions between the active ingredient and the excipients by partial least-squares regression analysis based on photostability screening for each additive. CONCLUSION: The results suggested that the additives light anhydrous silicic acid and povidone adversely affect the stability of Wf tablets. In addition, the light stability of ground tablets was affected considerably by their formulation.


Sign in / Sign up

Export Citation Format

Share Document