scholarly journals Intimate atomic Cu-Ag interfaces for high CO2RR selectivity towards CH4 at low over potential

Nano Research ◽  
2021 ◽  
Author(s):  
Chungseok Choi ◽  
Jin Cai ◽  
Changsoo Lee ◽  
Hyuck Mo Lee ◽  
Mingjie Xu ◽  
...  

AbstractDeveloping highly efficient electrochemical catalysts for carbon dioxide reduction reaction (CO2RR) provides a solution to battle global warming issues resulting from ever-increasing carbon footprint due to human activities. Copper (Cu) is known for its efficiency in CO2RR towards value-added hydrocarbons; hence its unique structural properties along with various Cu alloys have been extensively explored in the past decade. Here, we demonstrate a two-step approach to achieve intimate atomic Cu-Ag interfaces on the surface of Cu nanowires, which show greatly improved CO2RR selectivity towards methane (CH4). The specially designed Cu-Ag interfaces showed an impressive maximum Faradaic efficiency (FE) of 72% towards CH4 production at −1.17 V (vs. reversible hydrogen electrode (RHE)).

2019 ◽  
Vol 7 (27) ◽  
pp. 16117-16121 ◽  
Author(s):  
Xiaojuan Zhu ◽  
Tongwei Wu ◽  
Lei Ji ◽  
Chengbo Li ◽  
Ting Wang ◽  
...  

As a non-metal electrocatalyst for the N2 reduction reaction, boron phosphide nanoparticles offer a high NH3 yield of 26.42 μg h−1 mgcat.−1 and a high faradaic efficiency of 12.7% at –0.60 V vs. the reversible hydrogen electrode in 0.1 M HCl.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ji-Yong Kim ◽  
Deokgi Hong ◽  
Jae-Chan Lee ◽  
Hyoung Gyun Kim ◽  
Sungwoo Lee ◽  
...  

AbstractFor steady electroconversion to value-added chemical products with high efficiency, electrocatalyst reconstruction during electrochemical reactions is a critical issue in catalyst design strategies. Here, we report a reconstruction-immunized catalyst system in which Cu nanoparticles are protected by a quasi-graphitic C shell. This C shell epitaxially grew on Cu with quasi-graphitic bonding via a gas–solid reaction governed by the CO (g) - CO2 (g) - C (s) equilibrium. The quasi-graphitic C shell-coated Cu was stable during the CO2 reduction reaction and provided a platform for rational material design. C2+ product selectivity could be additionally improved by doping p-block elements. These elements modulated the electronic structure of the Cu surface and its binding properties, which can affect the intermediate binding and CO dimerization barrier. B-modified Cu attained a 68.1% Faradaic efficiency for C2H4 at −0.55 V (vs RHE) and a C2H4 cathodic power conversion efficiency of 44.0%. In the case of N-modified Cu, an improved C2+ selectivity of 82.3% at a partial current density of 329.2 mA/cm2 was acquired. Quasi-graphitic C shells, which enable surface stabilization and inner element doping, can realize stable CO2-to-C2H4 conversion over 180 h and allow practical application of electrocatalysts for renewable energy conversion.


Author(s):  
Rajasekaran Elakkiya ◽  
Govindhan Maduraiveeran

Design of high-performance and Earth-abundant electrocatalysts for electrochemical carbon dioxide (CO2) reduction reaction (CO2RR) into fuels and value-added chemicals offers an emergent pathway for environment and energy sustainable concerns. Herein,...


2020 ◽  
Vol 8 ◽  
Author(s):  
Ning Wang ◽  
Qing-Song Song ◽  
Wen-Jing Liu ◽  
Jian Zhang

A new ringlike V2O3 architecture was successfully synthesized by a template-free hydrothermal method, and the sulfur ions-assisted central-etching mechanism of the ringlike structure was proposed. Herein, as a proof-of-concept experiment, taking V2O3 nanorings as non-noble-metal-free nitrogen reduction reaction (NRR) catalysts, they show desired electrocatalytic performance toward NRR under ambient conditions (maximum yield: 47.2 µg h−1 mgcat.−1 at −0.6 V vs. reversible hydrogen electrode, maximum Faraday efficiency: 12.5% at −0.5 V vs. reversible hydrogen electrode), which is significantly higher than those of noble metal-based catalysts.


2020 ◽  
Vol 8 (1) ◽  
pp. 77-81 ◽  
Author(s):  
Runbo Zhao ◽  
Chuangwei Liu ◽  
Xiaoxue Zhang ◽  
Xiaojuan Zhu ◽  
Peipei Wei ◽  
...  

A Ru2P–reduced graphene oxide hybrid acts as a superior catalyst for electrochemical N2 fixation in 0.1 M HCl, achieving a large NH3 yield of 32.8 μg h−1mgcat.−1 and a high faradaic efficiency of 13.04%−0.05 V vs. the reversible hydrogen electrode.


2020 ◽  
Vol 10 (10) ◽  
pp. 3487 ◽  
Author(s):  
Changyeon Kim ◽  
Seokhoon Choi ◽  
Min-Ju Choi ◽  
Sol A Lee ◽  
Sang Hyun Ahn ◽  
...  

The photoelectrochemical reduction of CO2 to syngas that is used for many practical applications has been emerging as a promising technique to relieve the increase of CO2 in the atmosphere. Si has been considered to be one of the most promising materials for photoelectrodes, but the integration of electrocatalysts is essential for the photoelectrochemical reduction of CO2 using Si. We report an enhancement of catalytic activity for CO2 reduction reaction by Ag catalysts of tuned morphology, active sites, and electronic structure through reducing anodic treatment. Our proposed photocathode structure, a SiO2 patterned p-Si photocathode with these reduced Ag catalysts, that was fabricated using electron-beam deposition and electrodeposition methods, provides a low onset-potential of −0.16 V vs. the reversible hydrogen electrode (RHE), a large saturated photocurrent density of −9 mA/cm2 at −1.23 V vs. RHE, and faradaic efficiency for CO of 47% at −0.6 V vs. RHE. This photocathode can produce syngas in the ratio from 1:1 to 1:3, which is an appropriate proportion for practical application. This work presents a new approach for designing photocathodes with a balanced catalytic activity and light absorption to improve the photoelectrochemical application for not only CO2 reduction reaction, but also water splitting or N2 reduction reaction.


2018 ◽  
Vol 8 (21) ◽  
pp. 5428-5433 ◽  
Author(s):  
Hui Yang ◽  
Haoxuan Liu ◽  
Xijun Liu ◽  
Zhe Zhao ◽  
Jun Luo

We first report a thin-layered SnSe2 film as a robust catalyst for CO2 electroreduction, efficiently affording formate with a faradaic efficiency of 91% and a stable activity for more than 100 h at −0.8 V versus the reversible hydrogen electrode.


2020 ◽  
Vol 56 (7) ◽  
pp. 1074-1077 ◽  
Author(s):  
Bingyue Li ◽  
Xiaojuan Zhu ◽  
Jianwei Wang ◽  
Ruimin Xing ◽  
Qian Liu ◽  
...  

Ti3+–TiO2−x/TM behaves as an efficient electrocatalyst for ambient N2-to-NH3 fixation with a high faradaic efficiency of 14.62% and a NH3 yield of 3.51 × 10−11 mol s−1 cm−2 at −0.55 V versus a reversible hydrogen electrode in 0.1 M Na2SO4.


2019 ◽  
Vol 55 (36) ◽  
pp. 5263-5266 ◽  
Author(s):  
Rong Zhang ◽  
Lei Ji ◽  
Wenhan Kong ◽  
Huanbo Wang ◽  
Runbo Zhao ◽  
...  

A Bi nanosheet array on Cu foil (Bi NS/CF) is efficient and stable for electrocatalytic N2 reduction. In 0.1 M HCl, it shows a high faradaic efficiency of 10.26% at −0.50 V vs. the reversible hydrogen electrode.


2021 ◽  
Author(s):  
Wenbo Wang ◽  
Runqing Lu ◽  
Xin-Xin Xiao ◽  
Shanhe Gong ◽  
Daniel Kobina Sam ◽  
...  

Electrochemical carbon dioxide reduction reaction (eCO2RR) is a promising technology that uses electrical energy to catalytically reduce the greenhouse gas-CO2, which can convert CO2 into high value-added products such as...


Sign in / Sign up

Export Citation Format

Share Document